Plant Systematics and Evolution

, Volume 140, Issue 2–3, pp 109–117

The possible polyphyletic origin of copper tolerance inAgrostis tenuis (Gramineae)

  • Michael K. Nicholls
  • Thomas McNeilly
Article

Abstract

The effect of increased copper concentration in solution on the rooting of seven copper tolerant populations ofAgrostis tenuis has been examined using the regression technique ofFinlay &Wilkinson (1963). Three types of response to increased copper concentration have been detected, and it is suggested that these reflect a different genetic control of copper tolerance in different populations.

Key Words

Angiosperms Gramineae (Poaceae) Agrostis tenuis.—Evolution Copper tolerance genotype-environment interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonovics, J., Bradshaw, A. D., Turner, R. G., 1971: Heavy metal tolerance in plants. — Adv. Ecol. Res.,7, 1–85.CrossRefGoogle Scholar
  2. Brown, A. W. A., Pal, R., 1971: Insecticide Resistance in Arthropods. — W. H. O. Geneva.Google Scholar
  3. Bucio Alanis, L., 1966: Environmental and genotype — environmental components of variability. II. Heterozygotes. — Heredity21, 387–397.Google Scholar
  4. —— 1966: Environmental and genotype — environmental components of variability. V. Segregating generations. — Heredity21, 399–405.Google Scholar
  5. Connolly, V., Jinks, J. L., 1975: The genetic architecture of general and specific sensitivity. — Heredity35, 249–259.Google Scholar
  6. Cox, S. M., 1978: Multiple metal tolerance in the grassDeschampsia caespitosa. — Proc. 3rd. Ann. Meeting, CLRA, Sudbury, Ont., Canada.Google Scholar
  7. Eberhard, S. A., Russell, W. A., 1966: Stability parameters for comparing varieties. — Crop Sci.6, 36–40.CrossRefGoogle Scholar
  8. Finlay, K. W., Wilkinson, G. N., 1963: The analysis of adaptation in a plant breeding programme. — Aust. J. Agric. Res.14, 742–754.CrossRefGoogle Scholar
  9. Frankel, O. H., 1954: Invasion and evolution of plants in Australia and New Zealand. — Caryologia, Suppl., 600.Google Scholar
  10. Gartside, D. W., McNeilly, T., 1974: The potential for evolution of heavy metal tolerance in plants. II. Copper tolerance in normal populations of different plant species. — Heredity32, 335–348.Google Scholar
  11. Gillham, H. T., 1957: San Francisco Bay. — New York: Doubleday.Google Scholar
  12. Grime, J. P., Hunt, R., 1975: Relative growth rate: its range and adaptive significance in a local flora. — J. Ecol.63, 393–423.Google Scholar
  13. Hannon, N. Bradshaw, A. D., 1968: Evolution of salt tolerance in two coexisting species of grass. — Nature,220, 1342–1343.Google Scholar
  14. Hickey, D. A., McNeilly, T., 1975: Competition between metal tolerant and normal plant populations: a field experiment on normal soil. — Evolution29, 458–464.CrossRefGoogle Scholar
  15. Hill, L., Samuel, C. J. A., 1971: Measurement and inheritance of environmental response amongst selected material ofLolium perenne. — Heredity27, 265–276.Google Scholar
  16. Hogan, G. D., Courtin, G. M., Rouser, W. E., 1977: Copper tolerance in clones ofAgrostis gigantea from a mine waste site. — Can. J. Bot.55, 1043–1050.CrossRefGoogle Scholar
  17. Jones, E. T., 1958: The Aberystwyth strains of grasses and clovers. — University of Wales, Welsh Plant Breeding Station, Leaflet series S.6, 4–5.Google Scholar
  18. Jowett, D., 1959: Genecology of heavy metal tolerance inAgrostis. — Ph.D. thesis, University of Wales.Google Scholar
  19. Karataglis, S., 1980: Selective adaption to copper of populations ofAgrostis tenuis andFestuca rubra (Poaceae). — Pl. Syst. Evol.134, 215–238.CrossRefGoogle Scholar
  20. Nicholls, M. K., 1979: Ecological genetics of copper tolerantAgrostis tenuisSibth. — Ph.D. thesis, University of Liverpool.Google Scholar
  21. ——, 1979: Sensitivity of rooting and tolerance to copper inAgrostis tenuis. — New Phytol.83, 653–664.CrossRefGoogle Scholar
  22. Perkins, Jean M., Jinks, J. L., 1968: Environmental and genotype-environment components of variability. III. Multiple lines and crosses. — Heredity23, 339–356.PubMedGoogle Scholar
  23. Ramarkrishnan, P. S., 1968: Nutrional requirements of the edaphic ecotypes inMelilotus albaMedic. I. Calcium and phosphorus. — New Phytol.67, 145–157.CrossRefGoogle Scholar
  24. —— 1970: Nutritional requirements of the edaphic ecotypes inMelilotus alba Medic. III. Interference between calcareous and acid populations on the two soil types. — New Phytol.69, 81–86.CrossRefGoogle Scholar
  25. Snaydon, R. W., Bradshaw, A. D., 1961: Differential responses to calcium within the speciesFestuca ovina L. — New Phytol.60, 219–234.CrossRefGoogle Scholar
  26. Turesson, G., 1922: The species and the variety as ecological units. — Hereditas3, 100–113.CrossRefGoogle Scholar
  27. Venables, Anne, V., Wilkins, D. A., 1978: Salt tolerance in pasture grasses. — New Phytol.80, 613–622.CrossRefGoogle Scholar
  28. Wild, H., Bradshaw, A. D., 1977: The evolutionary effects of metalliferous and anomalous soils in south central Africa. — Evolution31, 282–293.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Michael K. Nicholls
    • 1
  • Thomas McNeilly
    • 2
  1. 1.Trinity and All Saints CollegeLeedsEngland, UK
  2. 2.Botany DepartmentUniversity of LiverpoolEnglandUK

Personalised recommendations