Advertisement

Water, Air, and Soil Pollution

, Volume 93, Issue 1–4, pp 367–381 | Cite as

Effects of pH and ionic strength on the adsorption of Cs, Sr, Eu, Zn, Cd and Hg byPseudomonas putida

  • M. Ledin
  • K. Pedersen
  • B. Allard
Article

Abstract

Bacterial metal accumulation may influence the mobility and chemical form (speciation) of metals in the environment. The passive adsorption of six metals (Cs, Sr, Eu, Zn, Cd and Hg) by a soil bacterium,Pseudomonas putida, was studied in the present work, using a radiotracer batch-distribution technique. To replicate natural conditions, the adsorption was considered as a function of pH (4–10) and ionic strength (0.01 M and 0.1 M KCl) at a low metal concentration (10−8 M).P. putida exhibited a total metal accumulating capacity of 200–1000 meq kg−1 bacteria (dry weight) (measured in 0.01 M KCl at pH 6.4). This capacity is comparable to that of many organic soil components and it is above the capacity of most inorganic constituents. The following affinity order of adsorption was observed: Hg>Eu>Cd,Zn,Sr>Cs. The results indicate that the bacterial surface carries different sites that exhibit varying affinity and capacity for binding metal ions. It can be concluded that the overall adsorption of metals byP. putida is determined by several interacting processes related to the properties of both the metals and the bacterial surface and to the composition of the solution phase (pH as well as ionic strength).

Key words

bacteria metals accumulation metal mobility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrland, S.: 1968,Struct. Bonding 5, 118.Google Scholar
  2. Allard, B. and Arsenie, I.: 1991,Water, Air, and Soil Pollut. 56, 457.CrossRefGoogle Scholar
  3. Beveridge, T. J.: 1986,Biotechnol. Bioeng. 16, 127.Google Scholar
  4. Brynhildsen, L., Lundgren, B. V., Allard B. and Rosswall, T.: 1988,Appl. Environ. Microbiol. 54, 1689.Google Scholar
  5. Collins, Y. E. and Stotzky, G.: 1992,Appl. Env. Microbiol. 58, 1592.Google Scholar
  6. Ephraim, J. H., Borén, H., Pettersson, C., Arsenie, I. and Allard, B.: 1989,Environ. Sci. Technol. 23, 356.CrossRefGoogle Scholar
  7. Ford, T. and Mitchell, R.: 1992, ‘Microbial Transport of Toxic Metals’, in R. Mitchell (ed.),Environmental Microbiology, Wiley-Liss, New York, p. 83.Google Scholar
  8. Gadd, G. M.: 1988, ‘Accumulation of Metals by Microorganisms and Algae’, in H.-J. Rehm and G. Reed (eds.),Biotechnology — A Comprehensive Treatise, Vol 6b, VCH Verlagsgesellschaft, Weinheim, p. 401.Google Scholar
  9. Harden, V. P. and Harris J. O.: 1953,J. Bacteriol. 65, 198.Google Scholar
  10. Huang, C. P., Westman, C., Quirk, K. and Huang, J. P.: 1988,Water Sci. Technol. 20, 369.Google Scholar
  11. Jean, G. E. and Bancroft, G. M.: 1986,Geochim. Cosmochim. Acta 50, 1455.CrossRefGoogle Scholar
  12. Krantz-Rülcker, C., Allard, B. and Schnürer, J.: 1996, ‘Adsorption of Hb Metals by Three Common Soil Fungi — Comparison and Assessment of Importance for Metal Distribution in Natural Soil Systems’,Soil Biol. Biochem. (in press)Google Scholar
  13. Maes, A., de Brandabere, J. and Cremers, A.: 1988,Radiochim. Acta 44/45, 51.Google Scholar
  14. Marquis, R. E., Mayzel, K. and Carstensen, E. L.: 1976,Can. J. Microbiol. 22, 975.CrossRefGoogle Scholar
  15. Mullen, M. D., Wolf, D. C., Ferris, F. G., Beveridge, T. J., Flemming, C. A. and Bailey, G. W.: 1989,Appl. Environ. Microbiol. 55, 3143.Google Scholar
  16. Norberg, A. B. and Persson, H.: 1984,Biotechnol. Bioeng. 26, 239.CrossRefGoogle Scholar
  17. Ou, L-T. and Marquis, R. E.: 1970,J. Bacteriol. 101, 92.Google Scholar
  18. Pearson, R. G. J.: 1963,Am. Chem. Soc. 85, 3533.CrossRefGoogle Scholar
  19. Pedersen, K. and Albinsson, Y.: 1991,Radiochim. Acta 54, 91.Google Scholar
  20. Pettersson, C., Arsenie, I., Ephraim, J., Borén H. and Allard, B.: 1989,Sci. Total Environ. 81/82, 287.CrossRefGoogle Scholar
  21. Premuzic, E. T., Lin, M., Zhu, H. L. and Gremme, A. M.: 1991,Arch. Environ. Contam. Toxicol. 20, 234.CrossRefGoogle Scholar
  22. SAS Institute Inc.: 1989,SAS/STAT User's guide, Version 6, 4th ed., SAS Institute Inc., Cary, NC.Google Scholar
  23. Shuttleworth, K. L. and Unz, R. F.: 1993,Appl. Environ. Microbiol. 59, 1274.Google Scholar
  24. Sillén, L. G. and Martell, A. E.: 1964,Stability Constants of Metal-ion Complexes, Spec. Publ. 17, The Chemical Society, London.Google Scholar
  25. Simões Gonçalves, M. L. S. and Lopes da Conçeicão, A. C.: 1989,Sci. Total Environ. 78, 155.CrossRefGoogle Scholar
  26. Simões Gonçalves, M. L. S., Sigg, L., Reutlinger M. and Stumm, W.: 1987,Sci. Total Environ. 60, 105.CrossRefGoogle Scholar
  27. Smith, R. M. and Martell, A. E.: 1976,Critical Stability Constants, Vol. 4: Inorganic complexes, Plenum Press, New York.Google Scholar
  28. Wallberg, M., Brynhildsen, L. and Allard, B.: 1991,Water, Air, and Soil Pollut. 57/58, 579.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • M. Ledin
    • 1
  • K. Pedersen
    • 2
  • B. Allard
    • 1
  1. 1.Department of Water and Environmental StudiesLinköping UniversityLinköpingSweden
  2. 2.Department of General and Marine MicrobiologyUniversity of GöteborgGöteborgSweden

Personalised recommendations