Advertisement

Journal of Materials Science

, Volume 27, Issue 19, pp 5113–5140 | Cite as

Synthesis, properties and applications of titanium aluminides

  • F. H. Froes
  • C. Suryanarayana
  • D. Eliezer
Review

Abstract

Attractive elevated-temperature properties and low density make the titanium aluminides very interesting for both engine and airframe applications, particularly in the aerospace industry. The challenge to the materials scientist is to maintain these characteristics while building-in “forgiveness”. The basic phase diagram and crystal structure of both the Ti3Al and TiAl phases are reviewed, followed by a consideration of chemistry-processing-microstructure-deformation/fracture-mechanical property relationships in monolithic material. Conventional and innovative synthesis methods are presented, including use of hydrogen as a temporary alloying element. Composite concepts as a method to enhance not only “forgiveness” but also elevated-temperature behaviour are discussed. Environmental effects are evaluated prior to consideration of present and projected applications of both monolithic and composite material. It is concluded that while the titanium aluminides in monolithic form can be used now in non-demanding applications, much further research and development is required before this material class can be used in critical applications, especially in composite concepts.

Keywords

Titanium Alloy Element Aerospace Industry Property Relationship Titanium Aluminides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Congress of the US, Office of Technology Assessment, “Advanced Materials by Design” (June 1988).Google Scholar
  2. 2.
    A. R. C. Westwood,Met. Trans. B. 19B (1988) 155.Google Scholar
  3. 3.
    F. H. Froes, in “P/M in Aerospace and Defense Technologies”, edited by F. H. Froes (MPIF, Princeton, New Jersey, 1990) p. 23.Google Scholar
  4. 4.
    F. H. Froes, in Proceedings of ASM International sponsored meeting “Powder Metallurgy — Key to Advanced Materials Technology”, Vancouver, July/August 1990, in press.Google Scholar
  5. 5.
    Sci. Amer. 255(4) (1986).Google Scholar
  6. 6.
    F. H. Froes, in Proceedings of 4th Israel Materials Engineering Conference, edited by D. Itzhak and D. Eliezer (Weizmann Science Press of Israel, Jerusalem, 1989) pp. 1–41.Google Scholar
  7. 7.
    Idem, Mater. Design 10(3) (1989) 110.CrossRefGoogle Scholar
  8. 8.
    Idem, Swiss Mater. 2(2) (1990) 23.Google Scholar
  9. 9.
    Idem, Mater. Edge 5 (1988) 19.Google Scholar
  10. 10.
    Idem, in “Advanced Materials — Outlook and Information Requirements”, edited by L. J. Sousa and C. A. Sorrell (US BOM, Washington, DC, 1990) p. 41.Google Scholar
  11. 11.
    F. H. Froes, C. Suryanarayana andP. H. Shingu, University of Idaho/Kyoto University, work in progress (1989–91).Google Scholar
  12. 12.
    F. H. Froes,Mater. Edge 6 (May/June 1989) 17.Google Scholar
  13. 13.
    F. H. Froes andC. Suryanarayana, in Proceedings of Workshop on Advanced Materials, Minsk, USSR, May/June 1989, in press.Google Scholar
  14. 14.
    F. H. Froes, in “Space Age Metals Technology”, edited by F. H. Froes and R. A. Cull (SAMPE, Covina, California, 1988) p. 1.Google Scholar
  15. 15.
    F. H. Froes andY. W. Kim, in Proceedings of International Conference on Advanced Materials, Milan, May 1989, in press.Google Scholar
  16. 16.
    C. Suryanarayana andF. H. Froes,Light Metal Age 47 (5/6) (1989) 18.Google Scholar
  17. 17.
    F. H. Froes andJ. Wadsworth, in Proceedings of BNF 7th International Conference, Oxford, UK, June 1989, in press.Google Scholar
  18. 18.
    R. W. Cahn,Metals, Mater. Processes 1 (1989) 1.Google Scholar
  19. 19.
    D. L. Anton, D. M. Shah, D. N. Duhl andA. F. Giamei,JOM 41(9) (1989) 12.Google Scholar
  20. 20.
    R. L. Fleischer, D. M. Dimiduk andH. A. Lipsitt,Ann. Rev. Mater. Sci. 19 (1989) 231.CrossRefGoogle Scholar
  21. 21.
    R. L. Fleischer andA. I. Taub,JOM 41(9) (1989) 8.Google Scholar
  22. 22.
    N. S. Stoloff andR. G. Davies,Progr. Mater. Sci. 13 (1966) 1.CrossRefGoogle Scholar
  23. 23.
    J. H. Westbrook (ed.), “Mechanical Properties of Intermetallic Compounds” (Wiley, New York, 1960).Google Scholar
  24. 24.
    Idem (ed.), “Intermetallic Compounds” (Wiley, New York, 1967).Google Scholar
  25. 25.
    B. H. Kear, C. T. Sims, N. S. Stoloff andJ. H. Estbrook (eds), “Ordered Alloys — Structural Applications and Physical Metallurgy” (Claitor, Baton Rouge, Louisiana, 1970).Google Scholar
  26. 26.
    F. H. Froes, D. Eylon andH. B. Bomberger (eds), “Titanium Technology: Present Status and Future Trends” (Titanium Development Association, Dayton, Ohio, 1985).Google Scholar
  27. 27.
    H. A. Lipsitt, in “High Temperature Ordered Intermetallic Alloys”, series Vol. 39, edited by C. C. Koch, C. T. Liu and N. S. Stoloff (MRS, Pittsburgh, 1985) p. 351.Google Scholar
  28. 28.
    M. J. Blackburn andM. P. Smith, Technical Report AFWAL-TR-80-4175 (WPAFB, Ohio, 1980).Google Scholar
  29. 29.
    Idem, Technical Report AFWAL-TR-82-4086 (WPAFB, Ohio, 1982).Google Scholar
  30. 30.
    Y-W. Kim,JOM 41(7) (1989) 24.Google Scholar
  31. 31.
    Y-W. Kim andF. H. Froes, in “High Temperature Aluminides and Intermetallics”, edited by S. H. Whang, C. T. Liu, D. P. Pope and J. O. Stiegler (TMS, Warrendale, Pennsylvania, 1990) p. 485.Google Scholar
  32. 32.
    C. T. Liu, F. H. Froes andJ. O. Stiegler, in “Metals Handbook”, 10th Edn, Vol. 2 (ASM International, Materials Park, Ohio, 1990) p. 913.Google Scholar
  33. 33.
    Y-W. Kim, in Proceedings “High Temperature Ordered Intermetallic Alloys IV”, series Vol. 213, edited by L. A. Johnson, D. P. Pope and J. O. Stiegler (MRS, Pittsburgh, Pennsylvania, 1991) p. 777.Google Scholar
  34. 34.
    E. F. Bradley, in Proceedings of Gorham Advanced Materials Institute Conference, “Investment, Licensing and Strategic Partnering Opportunities, Emerging Technology, Applications, and Markets for Aluminides, Iron, Nickel and Titanium”, Monterey, California, November 1989.Google Scholar
  35. 35.
    R. E. Schafrik,Met. Trans. 8A (1977) 1003.Google Scholar
  36. 36.
    N. S. Choudhury, H. C. Graham andJ. W. Hinze,J. Electrochem. Soc. 123 (1976) 668.Google Scholar
  37. 37.
    M. Khobaib andF. W. Vahldiek, in “Space Age Metals Technology”, edited by F. H. Froes and R. A. Cull (SAMPE, Covina, California, 1988) p. 262.Google Scholar
  38. 38.
    J. Subrahmanyam,J. Mater. Sci. 23 (1988) 1906.CrossRefGoogle Scholar
  39. 39.
    C. G. Pantano andE. J. H. Chen (eds), “Interfaces in Composites” (MRS, Pittsburgh, 1990).Google Scholar
  40. 40.
    R. B. Bhagat, A. H. Clauer, P. Kumar andA. M. Ritter (eds), “Metal and Ceramic Matrix Composites: Processing, Modeling and Mechanical Behavior” (TMS, Warrendale, Pennsylvania, 1990).Google Scholar
  41. 41.
    D. L. Anton, P. L. Martin, D. B. Miracle andR. McMeeking (eds), “Intermetallic Matrix Composites”, series Vol. 194 (MRS, Pittsburgh, 1990).Google Scholar
  42. 42.
    R. Y. Lin, R. J. Arsenault, G. P. Martins andS. G. Fishman (eds), “Interfaces in Metal-Ceramic Composites” (TMS, Warrendale, Pennsylvania, 1990).Google Scholar
  43. 43.
    C. C. Koch, C. T. Liu andN. S. Stoloff (eds), “High-Temperature Ordered Intermetallic Alloys”, series Vol. 39 (MRS, Pittsburgh, 1985).Google Scholar
  44. 44.
    N. S. Stoloff, C. C. Koch, C. T. Liu andO. Izumi (eds), “High-Temperature Ordered Intermetallic Alloys II”, series Vol. 81 (MRS, Pittsburgh, 1987).Google Scholar
  45. 45.
    C. T. Liu, A. I. Taub, N. S. Stoloff andC. C. Koch (eds), “High-Temperature Ordered Intermetallic Alloys III”, series Vol. 133 (MRS, Pittsburgh, 1989).Google Scholar
  46. 46.
    S. H. Whang, C. T. Liu, D. P. Pope andJ. O. Stiegler (eds), “High-Temperature Aluminides and Intermetallics” (TMS, Warrendale, Pennsylvania, 1990).Google Scholar
  47. 47.
    L. A. Johnson, D. P. Pope andJ. O. Stiegler (eds), “High-Temperature Ordered Intermetallic Alloys IV”, series Vol. 213 (MRS, Pittsburgh, 1991).Google Scholar
  48. 48.
    J. B. McAndrew andD. McPherson, WADC-TR-53-182, Part II (WPAFB, Ohio, 1955) andTrans. AIME 206 (1956) 1348.Google Scholar
  49. 49.
    J. B. McAndrew andC. R. Simcoe, WADD-TR-60-99 (WPAFB, Ohio, 1960).Google Scholar
  50. 50.
    E. Van Erkelenz,Metall. Erz. 20(11) (1923) 206.Google Scholar
  51. 51.
    W. Manchot andA. Leber,Z. Anorg. Chem. 150 (1926) 26.Google Scholar
  52. 52.
    H. R. Ogden, D. J. Maykuth, W. L. Finlay andR. I. Jaffee,Trans. AIME 191 (1951) 1150.Google Scholar
  53. 53.
    E. S. Bumps, H. D. Kessler andM. Hansen,ibid. 194 (1952) 609.Google Scholar
  54. 54.
    I. I. Kornilov, E. N. Pylaeva andM. A. Volkova,Akad. Nauk SSSR, Otd. Khim. Nauk 7 (1956) 771.Google Scholar
  55. 55.
    E. Ence andH. Margolin,Trans. AIME 221 (1961) 151.Google Scholar
  56. 56.
    I. I. Kornilov, E. N. Pylaeva, M. A. Volkova, P. I. Kripyakevich andV. Y. Maekiv,Dokl. Akad. Nauk SSSR 161 (1965) 843.Google Scholar
  57. 57.
    A. Raman andK. Schubert,Z. Metallkde 56 (1965) 44.Google Scholar
  58. 58.
    M. J. Blackburn,Trans. AIME 239 (1967) 1200.Google Scholar
  59. 59.
    F. J. J. Van Loo andG. D. Rieck,Acta Metall. 21 (1973) 73.CrossRefGoogle Scholar
  60. 60.
    R. D. Shull, A. J. McAlister andR. Reno, in “Titanium Science and Technology”, Vol. 4, edited by G. Lutjering, U. Zwicker and W. Bunk (DGM, Oberursel, Germany, 1985) p. 1459.Google Scholar
  61. 61.
    J. L. Murray, “Phase Diagrams of Binary Titanium Alloys” (ASM International, Materials Park, Ohio, 1987) p. 12.Google Scholar
  62. 62.
    Idem, Met. Trans. 19A (1988) 243.Google Scholar
  63. 63.
    C. McCullogh, J. J. Valencia, H. Matoes, C. G. Levi, R. Mehrabian andK. A. Rhyne,Scripta Metall. 22 (1988) 1131.CrossRefGoogle Scholar
  64. 64.
    C. McCullogh, J. J. Valencia, C. G. Levi andR. Mehrabian,Acta Metall. 37 (1989) 1321.CrossRefGoogle Scholar
  65. 65.
    S. C. Huang andP. A. Siemers,Met. Trans. 20A (1989) 1899.Google Scholar
  66. 66.
    R. G. Rowe andS. C. Huang,Israel J. Tech. 24 (1988) 255.Google Scholar
  67. 67.
    S. C. Huang, E. L. Hall andM. F. X. Giglotti, in Proceedings of 6th World Conference on Titanium, Vol. 2, Cannes, France, June 1988, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Les Ulis Cedex, France, 1989) p. 1109.Google Scholar
  68. 68.
    K. Kaltenbach, S. Gama, D. G. Pinatti, K. Schulze andE-T. Henig,Z. Metallkde. 80 (1989) 535.Google Scholar
  69. 69.
    D. Banerjee, T. K. Nandy, A. K. Gogia andK. Muraleedharan, in Proceedings of 6th World Conference on Titanium, Vol. 2, Cannes, France, June 1988, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Les Ulis Cedex, France, 1989) p. 1091.Google Scholar
  70. 70.
    M. J. Kaufman, T. F. Broderick, C. H. Ward, J. K. Kim, R. G. Rowe andF. H. Froes, in Proceedings of 6th World Conference on Titanium, Vol. 2, Cannes, France, June 1988, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Les Ulis Cedex, France, 1989) p. 985.Google Scholar
  71. 71.
    T. J. Jewett, J. C. Lin, N. R. Bonda, L. E. Seitzman, K. C. Hsieh, Y. A. Chang andJ. H. Perepezko, in “High-Temperature Ordered Intermetallic Alloys III”, series Vol. 133, edited by C. T. Liu, A. I. Taub, N. S. Stoloff and C. C. Koch (MRS, Pittsburgh, 1989) p. 69.Google Scholar
  72. 72.
    T. Tsujimoto andK. Hashimoto,ibid.in p. 391.Google Scholar
  73. 73.
    J. H. Perepezko, Y. A. Chang, L. E. Seitzman, J. C. Lin, N. R. Bonda, T. J. Jewett andJ. C. Mishurda, in “High-Temperature Aluminides and Intermetallics”, edited by S. H. Whang, C. T. Liu, D. P. Pope and J. O. Stiegler (TMS, Warrendale, Pennsylvania, 1990) p. 19.Google Scholar
  74. 74.
    C. Suryanarayana andD. S. Lee,Scripta Metall. in press.Google Scholar
  75. 75.
    R. Strychor, J. C. Williams andW. A. Soffa,Met. Trans. 19A (1988) 225.Google Scholar
  76. 76.
    A. G. Jackson, K. R. Teal, D. Eylon, F. H. Froes andS. J. Savage, in “Rapidly Solidified Alloys and Their Mechanical and Magnetic Properties”, series Vol. 58, edited by B. C. Giessen, D. E. Polk and A. I. Taub (MRS, Pittsburgh, 1986) p. 365.Google Scholar
  77. 77.
    T. F. Broderick, K. R. Teal andF. H. Froes, unpublished work, WPAFB, Ohio (1987).Google Scholar
  78. 78.
    D. Banerjee, A. K. Gogia, T. K. Nandi andV. A. Joshi,Acta Metall. 36 (1988) 871.CrossRefGoogle Scholar
  79. 79.
    L. A. Bendersky, W. J. Boettinger, B. P. Burton, F. S. Biancaniello andC. B. Shoemaker,ibid. 38 (1990) 931.CrossRefGoogle Scholar
  80. 80.
    P. Villars andL. D. Calvert, “Pearson's Handbook of Crystallographic Data for Intermetallic Phases” (ASM International, Metals Park, Ohio, 1985).Google Scholar
  81. 81.
    K. Muraleedharan, S. V. Nagender Naidu andD. Banerjee,Scripta Metall. 24 (1990) 27.CrossRefGoogle Scholar
  82. 82.
    R. G. Rowe, in “High-Temperature Aluminides and Intermetallics”, edited by S. H. Whang, C. T. Liu, D. P. Pope and J. O. Stiegler (TMS, Warrendale, Pennsylvania, 1990) p. 375.Google Scholar
  83. 83.
    J. M. Larsen, K. A. Williams, S. J. Balsone andM. A. Stucke,ibid.in “ p. 521.Google Scholar
  84. 84.
    M. J. Blackburn, D. L. Ruckle andC. E. Bevan, Technical Report AFML-TR-78-18 (WPAFB, Ohio, 1978).Google Scholar
  85. 85.
    M. J. Blackburn andM. P. Smith, Technical Report AFWAL-TR-81-4046 (WPAFB, Ohio, 1981).Google Scholar
  86. 86.
    Idem, Interim Technical Report FR-19139 (United Technologies, East Hartford, Connecticut, 1988).Google Scholar
  87. 87.
    H. B. Bomberger, Technical Report WRDC-TR-89-4036 (WPAFB, Ohio, 1989).Google Scholar
  88. 88.
    H. A. Lipsitt, D. Shechtman andR. E. Schafrik,Met. Trans. 11A (1980) 1369.Google Scholar
  89. 89.
    S. A. Court, J. P. A. Lofvander, M. H. Loretto andH. L. Fraser,Phil. Mag. 59 (1989) 379.Google Scholar
  90. 90.
    P. L. Martin, H. A. Lipsitt, N. T. Nuhfer andJ. C. Williams, in “Titanium 80: Science and Technology”, Vol. 2, edited by H. Kimura and O. Izumi (TMS, Warrendale, Pennsylvania, 1980) p. 1245.Google Scholar
  91. 91.
    M. J. Blackburn andM. P. Smith, Technical Report WRDC-TR-89-4095 (WPAFB, Ohio, 1989).Google Scholar
  92. 92.
    M. J. Blackburn andM. P. Smith, US Patent 4 294 615 (1981).Google Scholar
  93. 93.
    M. J. Blackburn, J. T. Hill andM. P. Smith, AFWAL-TR-84-4078 (WPAFB, Ohio, 1984).Google Scholar
  94. 94.
    P. K. Brindley, S. L. Draper, M. V. Nathal andJ. I. Eldridge, in “Fundamental Relationships Between Microstructure and Mechanical Properties of Metal Matrix Composites”, edited by P. K. Liaw and M. N. Gungar (TMS, Warrendale, Pennsylvania, 1990) p. 387.Google Scholar
  95. 95.
    D. A. Koss, D. Banerjee, D. A. Lukasak andA. K. Gogia, in “High-Temperature Aluminides and Intermetallics”, edited by S. H. Whang, C. T. Liu, D. P. Pope and J. O. Stiegler (TMS, Warrendale, Pennsylvania, 1990) p. 175.Google Scholar
  96. 96.
    J. W. Newkirk andG. B. Feldewerth, in “High-Temperature Ordered Intermetallic Alloys III”, series Vol. 133, edited by C. T. Liu, A. I. Taub, N. S. Stoloff and C. C. Koch (MRS, Pittsburgh, 1989) p. 681.Google Scholar
  97. 97.
    C. H. Ward, J. C. Williams, A. W. Thompson, D. G. Rosenthal andF. H. Froes, in Proceedings of 6th World Conference on Titanium, Vol. 2, Cannes, France, June 1988, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Les Ulis Cedex, France, 1989) p. 1103.Google Scholar
  98. 98.
    A. K. Gogia, T. K. Nandy, D. Banerjee andY. Mahajan,ibid.in p. 1097.Google Scholar
  99. 99.
    J. C. Williams andM. J. Blackburn, in “Ordered Alloys”, edited by B. H. Kear, C. T. Sims, N. S. Stoloff and J. H. Westbrook (Claitor, Baton Rouge, Louisiana, 1970) p. 425Google Scholar
  100. 100.
    S. M. L. Sastry andH. A. Lipsitt,Met. Trans. 8A (1977) 1543.Google Scholar
  101. 101.
    Idem, in “Titanium 80: Science and Technology”, Vol. 2, edited by H. Kimura and O. Izumi (TMS, Warrendale, Pennsylvania, 1980) p. 1231.Google Scholar
  102. 102.
    S. A. Court, J. P. A. Lofvander, M. H. Loretto andH. L. Fraser,Phil. Mag. 61 (1990) 109.Google Scholar
  103. 103.
    A. K. Gogia, D. Banerjee andT. K. Nandy,Met. Trans. 21A (1990) 609.Google Scholar
  104. 104.
    M. Thomas, A. Vassel andP. Veyssiere,Scripta Metall. 21 (1987) 501.CrossRefGoogle Scholar
  105. 105.
    B. J. Marquardt, G. K. Scarr, J. C. Chestnut, C. G. Rhodes andH. L. Fraser, in Proceedings of 6th World Conference on Titanium, Vol. 2, Cannes, France, June 1988, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Les Ulis Cedex, France, 1989) p. 955.Google Scholar
  106. 106.
    J. P. A. Lofvander, S. A. Court, M. H. Loretto andH. L. Fraser,Phil. Mag. Lett. 60, (1989) 111.Google Scholar
  107. 107.
    J. C. Williams, in “Titanium and Titanium Alloys”, Vol. 2, edited by J. C. Williams and A. F. Belov (Plenum, New York, 1982) p. 1477.Google Scholar
  108. 108.
    J. C. Williams, B. S. Hickman andH. L. Marcus,Met. Trans. 2 (1971) 1913.Google Scholar
  109. 109.
    D. Banerjee, A. K. Gogia andT. K. Nandy,ibid. 21A (1990) 627.Google Scholar
  110. 110.
    K. Cho andJ. Gurland,ibid. 19A (1988) 2027.Google Scholar
  111. 111.
    A. K. Gogia, T. K. Nandy, D. Banerjee andY. Mahajan, in Proceedings of 6th World Conference on Titanium, Vol. 2, Cannes, France, June 1988, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Les Ulis Cedex, France, 1989) p. 1097.Google Scholar
  112. 112.
    Zou Dunxu, Central Iron and Steel Research Institute, Beijing, Private Communication (1991).Google Scholar
  113. 113.
    D. A. Lukasak andD. A. Koss,Met. Trans. 21A (1990) 135.Google Scholar
  114. 114.
    R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials, 2nd Ed (Wiley, New York, 1983).Google Scholar
  115. 115.
    M. A. Stucke andH. A. Lipsitt, in “Titanium Rapid Solidification Technology”, edited by F. H. Froes and D. Eylon (TMS, Warrendale, Pennsylvania, 1986) p. 255.Google Scholar
  116. 116.
    W. Cho, “Effect of Microstructure on Deformation and Creep Behavior of Ti-25Al-10Nb-3V-1Mo”, Technical Report (Air Force Office of Scientific Research, Bolling Air Force Base, Washington, DC, 1988).Google Scholar
  117. 117.
    C. G. Rhodes, in Proceedings of 6th World Conference on Titanium, Vol. 1, Cannes, France, June 1988, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Les Ulis Cedex, France, 1989) p. 199.Google Scholar
  118. 118.
    M. G. Mendiratta andH. A. Lipsitt,J. Mater. Sci. 15 (1980) 2985.CrossRefGoogle Scholar
  119. 119.
    S-C. Huang andE. L. Hall, in “High-Temperature Ordered Intermetallic Alloys III”, series Vol. 133, edited by C. T. Liu, A. I. Taub, N. S. Stoloff and C. C. Koch (MRS, Pittsburgh, 1989) p. 373.Google Scholar
  120. 120.
    T. Tsujimoto andK. Hashimoto,ibid.in p. 391.Google Scholar
  121. 121.
    C. R. Feng, D. J. Michel andC. R. Crowe,ibid.in p. 669.Google Scholar
  122. 122.
    I. A. Zelonkov andYe. N. Martynchik,Metallofizika, Naukova Dumka 42 (1972) 63.Google Scholar
  123. 123.
    T. Kawabata, M. Tadano andO. Izumi,Scripta Metall. 22 (1988) 1725.CrossRefGoogle Scholar
  124. 124.
    A. B. Notkin andA. Molotkov, All Union Institute for Light Alloys, Moscow, Private Communication (1991).Google Scholar
  125. 125.
    R. Z. Valiev, Institute for Metals Superplasticity Problems, USSR Academy of Sciences, Khalturina, Private Communication (1991).Google Scholar
  126. 126.
    T. Kawabata, T. Kanai andO. Izumi,Acta Metall. 33 (1985) 1355.CrossRefGoogle Scholar
  127. 127.
    S. H. Whang andY. D. Hahn,Scripta Met. Mater. 24 (1990) 485.CrossRefGoogle Scholar
  128. 128.
    D. Shechtman, M. J. Blackburn andH. A. Lipsitt,Met. Trans. 5 (1974) 1373.Google Scholar
  129. 129.
    H. A. Lipsitt, D. Shechtman andR. E. Schafrik,ibid. 6A (1975) 1991.Google Scholar
  130. 130.
    T. Kawabata andO. Izumi, in “High-Temperature Aluminides and Intermetallics”, edited by S. H. Whang, C. T. Liu, D. P. Pope and J. O. Stiegler (TMS, Warrendale, Pennsylvania, 1990) p. 403.Google Scholar
  131. 131.
    S. H. Whang andY. D. Hahn,ibid.in “ p. 91.Google Scholar
  132. 132.
    B. A. Greenberg, O. V. Antonova, V. N. Indenbaum, L. E. Karkina, A. B. Notkin andM. V. Ponomarev, Preprint No. 89/7 (USSR Academy of Sciences Ural Division, Sverdlovsk, 1989).Google Scholar
  133. 133.
    M. J. Marcinkowski, N. Brown andR. M. Fischer,Acta Metall. 9 (1961) 129.CrossRefGoogle Scholar
  134. 134.
    G. Hug, A. Loiseau andP. Veyssiere,Phil Mag. A57 (1988) 499.Google Scholar
  135. 135.
    S. H. Whang andY. D. Hahn, in “High-Temperature Ordered Intermetallic Alloys III”, series Vol. 133, edited by C. T. Liu, A. I. Taub, N. S. Stoloff and C. C. Koch (MRS, Pittsburgh, 1989) p. 687.Google Scholar
  136. 136.
    S. C. Huang andE. L. Hall,ibid.in p. 373.Google Scholar
  137. 137.
    J. Y. Kim, Y. D. Hahn andS. H. Whang,Scripta Met. Mater. 25 (1991) 548.Google Scholar
  138. 138.
    Y. D. Hahn andS. H. Whang,ibid. 24 (1990) 139.CrossRefGoogle Scholar
  139. 139.
    S. H. Whang andY. D. Hahn,ibid. 24 (1990) 1679.CrossRefGoogle Scholar
  140. 140.
    Y. D. Hahn andS. H. Whang,Met. Trans. A in press.Google Scholar
  141. 141.
    T. Kawabata andO. Izumi,Scripta Metall 21 (1987) 435.CrossRefGoogle Scholar
  142. 142.
    E. L. Hall andS. C. Huang, in “High-Temperature Ordered Intermetallic Alloys III”, series Vol. 133, edited by C. T. Liu, A. I. Taub, N. S. Stoloff and C. C. Koch (MRS, Pittsburgh, 1989) p. 693.Google Scholar
  143. 143.
    T. Kawabata, M. Tadano andO. Izumi,Scripta Metall. 22 (1988) 1725.CrossRefGoogle Scholar
  144. 144.
    V. K. Vasudevan, S. A. Court, P. Kurath andH. L. Fraser,ibid. 23 (1989) 907.CrossRefGoogle Scholar
  145. 145.
    S. A. Court, V. K. Vasudevan andH. L. Fraser,Phil. Mag. A61 (1990) 141.Google Scholar
  146. 146.
    B. A. Greenberg,Phys. Status Solidi (b)55 (1973) 59.Google Scholar
  147. 147.
    T. Fujiwara, A. Nakamura, M. Hosomi, S. R. Nishitani, Y. Shirai andM. Yamaguchi,Phil. Mag. A61 (1990) 591.Google Scholar
  148. 148.
    T. Hanamura andM. Tanino,J. Mater. Sci. Lett. 8 (1989) 24.CrossRefGoogle Scholar
  149. 149.
    M. Yamaguchi, S. R. Nishitani andY. Shirai, in “High-Temperature Aluminides and Intermetallics”, edited by S. H. Whang, C. T. Liu, D. P. Pope and J. O. Stiegler (TMS, Warrendale, Pennsylvania, 1990) p. 63.Google Scholar
  150. 150.
    R. A. Amato, J. C. Chesnutt, M. F. X. Gigliotti, S. C. Huang, D. G. Konitzer, M. M. Lee, R. G. Rowe, G. K. Scarr andP. A. Zomcik, Interim Report No. 6, Contract F33615-86-C-5073 (WPAFB, Ohio, 1989).Google Scholar
  151. 151.
    H. R. Ogden, D. J. Maykuth, W. L. Finlay andR. I. Jaffee,JOM (February 1953) 267.Google Scholar
  152. 152.
    M. J. Blackburn andM. P. Smith, AFML-TR-79-4056 (WPAFB, Ohio, 1979).Google Scholar
  153. 153.
    T. Tsujimoto, K. Hashimoto, M. Nobuki andH. Suga,Trans. Jpn Inst. Metals 27 (1986) 341.Google Scholar
  154. 154.
    S. M. Barinov, T. T. Nartova, Y. L. Krasulin andT. V. Mogutova,Izvestiya Akademii Nauk USSR 5 (1983) 170.Google Scholar
  155. 155.
    T. Takahashi andH. Oikawa, in “High-Temperature Ordered Intermetallic Alloys III”, series Vol. 133, edited by C. T. Liu, A. I. Taub, N. S. Stoloff and C. C. Koch (MRS, Pittsburgh, 1989) p. 699.Google Scholar
  156. 156.
    H. Oikawa, in “High-Temperature Aluminides and Intermetallics”, edited by S. H. Whang, C. T. Liu, D. P. Pope and J. O. Stiegler (TMS, Warrendale, Pennsylvania, 1990) p. 353.Google Scholar
  157. 157.
    H. B. Bomberger andF. H. Froes, in “Titanium Technology: Present Status and Future Trends”, edited by F. H. Froes, D. Eylon and H. B. Bomberger (Titanium Development Association, Dayton, Ohio, 1985) p. 25.Google Scholar
  158. 158.
    T. E. O'Connel, AFWAL-TR-83-4050 (WPAFB, Ohio, 1983).Google Scholar
  159. 159.
    P. J. Bania, Timet, Henderson, Nevada, Private Communications (1991).Google Scholar
  160. 160.
    H. B. Bomberger, US Patent 3 679 403 (1972).Google Scholar
  161. 161.
    Idem, US Patent 3 963 525 (1976).Google Scholar
  162. 162.
    idem, US Patent 4 129 438 (1978).Google Scholar
  163. 163.
    R. M. German, “Powder Metallurgy Science” (MPIF, Princeton, 1984).Google Scholar
  164. 164.
    H. Jones, “Rapid Solidification of Metals and Alloys”, Monograph No. 8 (Institution of Metallurgists, London, UK, 1982).Google Scholar
  165. 165.
    F. H. Froes andD. Eylon,Int. Mater. Rev. 35 (1990) 162.Google Scholar
  166. 166.
    F. H. Froes andR. G. Rowe, in “Rapidly Solidified Alloys and Their Mechanical and Magnetic Properties”, series Vol. 58, edited by B. C. Giessen, D. E. Polk and A. I. Taub (MRS, Pittsburgh, 1986) p. 309.Google Scholar
  167. 167.
    T. R. Anantharaman andC. Suryanarayana, “Rapidly Solidified Metals — A Technological Overview” (Trans Tech, Aedermannsdorf, Switzerland, 1987).Google Scholar
  168. 168.
    F. H. Froes andR. G. Rowe, in Proceedings of 6th World Conference on Titanium, Vol. 2, Cannes, France, June 1988, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Les Ulis Cedex, France, 1989) p. 801.Google Scholar
  169. 169.
    C. Suryanarayana, F. H. Froes andR. G. Rowe,Int. Mater. Rev. 36 (1991) 85.Google Scholar
  170. 170.
    R. Sundaresan andF. H. Froes,JOM 39 (8) (1987) 22.Google Scholar
  171. 171.
    Idem, Met. Powd. Rep. 44 (1989) 195.Google Scholar
  172. 172.
    C. Suryanarayana, R. Sundaresan andF. H. Froes, in “Structural Applications of Mechanical Alloying”, edited by F. H. Froes and J. J. de Barbadillo (ASM International, Materials Park, Ohio, 1990) p. 193.Google Scholar
  173. 173.
    R. R. Oddone andR. M. German, in “Advances in Powder Metallurgy”, edited by T. G. Gasbarre and W. F. Jandeska Jr (MPIF, Princeton, 1989) p. 475.Google Scholar
  174. 174.
    R. E. Schafrik,Met. Trans. 7B (1976) 713.Google Scholar
  175. 175.
    Ch. Hartig, S. Chen, P. A. Beaven andH. Fukutomi, in Proceedings of 6th World Conference on Titanium, Vol. 2, Cannes, France, June 1988, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Les Ulis Cedex, France, 1989) p. 1021.Google Scholar
  176. 176.
    D. D. Bhatt, G. E. Meyer andA. L. Hoffmanner, AFML-TR-87-59 (WPAFB, Ohio, 1978).Google Scholar
  177. 177.
    T. E. O'Connell andJ. A. Miller, Interim Technical Report AFML-TR-78-129 (WPAFB, Ohio, 1978).Google Scholar
  178. 178.
    P. R. Roberts, in “Advances in Powder Metallurgy”, edited by T. G. Gasbarre and W. F. Jandeska Jr (MPIF, Princeton, 1989) p. 427.Google Scholar
  179. 179.
    A. P. Woodfield, R. A. Amato andC. F. Yolton,ibid.in “ p. 413.Google Scholar
  180. 180.
    J. H. Moll, C. F. Yolton andB. J. McTiernan,Int. J. Powd. Metall. 26 (1990) 149.Google Scholar
  181. 181.
    F. H. Froes andR. G. Rowe, Unpublished Work, WPAFB, Ohio (1985–87).Google Scholar
  182. 182.
    C. Suryanarayana andF. H. Froes, University of Idaho, Moscow, Idaho, Work in Progress (1991).Google Scholar
  183. 183.
    F. H. Froes andD. Eylon (eds), “Titanium — Rapid Solidification Technology” (TMS, Warrendale, Pennsylvania, 1986).Google Scholar
  184. 184.
    F. H. Froes andS. J. Savage, (eds), “Processing of Structural Metals by Rapid Solidification” (ASM International, Materials Park, Ohio, 1987).Google Scholar
  185. 185.
    F. H. Froes andR. G. Rowe, in “Titanium — Rapid Solidification Technology”, edited by F. H. Froes and D. Eylon (TMS, Warrendale, Pennsylvania, 1986) p. 1.Google Scholar
  186. 186.
    H. B. Bomberger andF. H. Froes,ibid.in “ p. 21.Google Scholar
  187. 187.
    R. G. Rowe andF. H. Froes, in “Processing of Structural Metals by Rapid Solidification”, edited by F. H. Froes and S. J. Savage (ASM International, Materials Park, Ohio, 1987) p. 163.Google Scholar
  188. 188.
    C. Suryanarayana andF. H. Froes,JOM 42(3) (1990) 22.Google Scholar
  189. 189.
    R. G. Rowe, J. A. Sutliff andE. F. Kock, in “Titanium — Rapid Solidification Technology”, edited by F. H. Froes and D. Eylon (TMS, Warrendale, Pennsylvania, 1986) p. 239.Google Scholar
  190. 190.
    R. G. Rowe, A. I. Taub andF. H. Froes, in “Rapid Solidification Processing: Principles and Technologies IV”, edited by R. Mehrabian and P. A. Parrish (Claitor, Baton Rouge, Louisiana, 1988) p. 149.Google Scholar
  191. 191.
    K. R. Teal, A. G. Jackson, D. Eylon andF. H. Froes, in “Titanium — Rapid Solidification Technology”, edited by F. H. Froes and D. Eylon (TMS, Warrendale, Pennsylvania, 1986) p. 231.Google Scholar
  192. 192.
    R. G. Rowe, in Proceedings of 6th World Conference on Titanium, Vol. 2, Cannes, France, June 1988, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Les Ulis Cedex, France, 1989) p. 979.Google Scholar
  193. 193.
    C. H. Ward, T. F. Broderick, A. G. Jackson, R. G. Rowe andF. H. Froes, in “Processing of Structural Metals by Rapid Solidification”, edited by F. H. Froes and S. J. Savage (ASM International, Materials Park, Ohio, 1987) p. 243.Google Scholar
  194. 194.
    J. W. Sears, J. P. A. Lofvander, R. Wheeler, M. A. Stucke, S. A. Court andH. L. Fraser, in Proceedings of 6th World Conference on Titanium, Vol. 2, Cannes, France, June 1988, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Les Ulis Cedex, France, 1989) p. 1115.Google Scholar
  195. 195.
    S. C. Jha, R. Ray, K. R. Teal andF. H. Froes,ibid.in p. 961.Google Scholar
  196. 196.
    J. A. Sutliff andR. G. Rowe, in “Rapidly Solidified Alloys and Their Mechanical and Magnetic Properties”, series Vol. 58, edited by B. C. Giessen, D. E. Polk and A. I. Taub (MRS, Pittsburgh, 1986) p. 371.Google Scholar
  197. 197.
    G. Venkataraman, A. G. Jackson, K. R. Teal andF. H. Froes,Mater. Sci. Engng 98 (1988) 257.CrossRefGoogle Scholar
  198. 198.
    G. Venkataraman, K. R. Teal andF. H. Froes, in Proceedings of 6th World Conference on Titanium, Vol. 2, Cannes, France, June 1988, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Les Ulis Cedex, France, 1989) p. 967.Google Scholar
  199. 199.
    G. Venkataraman, A. G. Jackson andF. H. Froes,ibid.in p. 973.Google Scholar
  200. 200.
    F. H. Froes andJ. R. Pickens,JOM 36(1) (1984) 14.Google Scholar
  201. 201.
    F. H. Froes, Y-W. Kim andF. Hehmann,ibid. 39(8) (1987) 14.Google Scholar
  202. 202.
    C. Suryanarayana, F. H. Froes, S. Krishnamurthy andY-W. Kim,Int. J. Powd. Metall. 26 (1990) 117.Google Scholar
  203. 203.
    T. C. Peng, B. London andS. M. L. Sastry, in “Advances in Powder Metallurgy”, edited by T. G. Gasbarre and W. F. Jandeska Jr (MPIF, Princeton, 1989) p. 387.Google Scholar
  204. 204.
    D. Vujic, Z. X. Li andS. H. Whang,Met. Trans. 19A (1988) 2445.Google Scholar
  205. 205.
    S. C. Huang, E. L. Hall andM. F. X. Gigliotti, in “High-Temperature Ordered Intermetallic Alloys II”, series Vol. 81, edited by N. S. Stoloff, C. C. Koch, C. T. Liu and O. Izumi (MRS, Pittsburgh, 1987) p. 481.Google Scholar
  206. 206.
    J. A. Graves, L. A. Bendersky, F. S. Biancaniello, J. H. Perepezko andW. J. Boettinger,Mater. Sci. Engng 98 (1988) 265.CrossRefGoogle Scholar
  207. 207.
    C. McCullough, J. J. Valencia, C. G. Levi andR. Mehrabian,Scripta Metall. 21 (1987) 1341.CrossRefGoogle Scholar
  208. 208.
    J. A. Graves, J. H. Perepezko, C. H. Ward andF. H. Froes,ibid. 21 (1987) 567.CrossRefGoogle Scholar
  209. 209.
    J. C. Mishurda, J. H. Perepezko, J. A. Graves andF. H. Froes, in Proceedings of 6th World Conference on Titanium, Vol. 2, Cannes, France, June 1988, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Les Ulis Cedex, France, 1989) p. 1127.Google Scholar
  210. 210.
    D. S. Shih, G. K. Scarr andJ. C. Chesnutt, in “High-Temperature Ordered Intermetallics III”, series Vol. 133, edited by C. T. Liu, A. I. Taub, N. S. Stoloff and C. C. Koch (MRS, Pittsburgh, 1989) p. 167.Google Scholar
  211. 211.
    E. L. Hall andS. C. Huang, GE Corporate R & D Center, Schenectady, NY, Work in Progress (1990–91).Google Scholar
  212. 212.
    S. C. Huang, GE Corporate R & D Center, Schenectady, NY, Private Communication (1989).Google Scholar
  213. 213.
    E. L. Hall andS. C. Huang, in “High-Temperature Ordered Intermetallic Alloys III”, series Vol. 133, edited by C. T. Liu, A. I. Taub, N. S. Stoloff and C. C. Koch (MRS, Pittsburgh, 1989) p. 693.Google Scholar
  214. 214.
    C. Suryanarayana, R. Sundaresan andF. H. Froes, in “Solid State Powder Processing”, edited by A. H. Clauer and J. J. de Barbadillo (TMS, Warrendale, Pennsylvania, 1990) p. 55.Google Scholar
  215. 215.
    F. H. Froes andD. Eylon, in “Hydrogen Effects on Materials Behavior”, edited by N. R. Moody and A. W. Thompson (TMS, Warrendale, Pennsylvania, 1990) p. 261.Google Scholar
  216. 216.
    F. H. Froes, D. Eylon andC. Suryanarayana,JOM 42(3) (1990) 26.Google Scholar
  217. 217.
    L. S. Steele, D. Eylon, K. R. Teal, I. Weiss andF. H. Froes, in Proceedings of 6th World Conference on Titanium, Vol. 2, Cannes, France, June 1988, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Les Ulis Cedex, France, 1989) p. 1009.Google Scholar
  218. 218.
    L. S. Steele, D. Eylon andF. H. Froes, in “Advances in Powder Metallurgy”, edited by T. G. Gasbarre and W. F. Jandeska Jr (MPIF, Princeton, 1989) p. 509.Google Scholar
  219. 219.
    I. S. Polkin, All Union Institute for Light Alloys, Moscow, USSR, Private Communication (1989).Google Scholar
  220. 220.
    D. S. Shong, Y-W. Kim, C. F. Yolton andF. H. Froes, in “High-Temperature Ordered Intermetallic Alloys III”, series Vol. 133, edited by C. T. Liu, A. I. Taub, N. S. Stoloff and C. C. Koch (MRS, Pittsburgh, 1989) p. 711.Google Scholar
  221. 221.
    L. S. Sigl, P. A. Mataga, J. Dalgleish, R. M. McMeeking andA. G. Evans,Acta Metall. 36 (1988) 945.CrossRefGoogle Scholar
  222. 222.
    M. S. Newkirk, A. W. Urghart andH. R. Zwicker,J. Mater. Res. 1 (1986) 81.Google Scholar
  223. 223.
    I. Aksay andA. Pysik, in “Ceramic Microstructures: Role of Interfaces”, edited by J. A. Pask and A. G. Evans (Plenum, New York, 1987) pp. 1–17.Google Scholar
  224. 224.
    J. Breme andTh. Weik, in Proceedings of 6th World Conference on Titanium, Vol. 2, edited by P. Lacombe, R. Tricot and G. Beranger (Editions de Physique, Les Ulis Cedex, France, 1989) p. 1003.Google Scholar
  225. 225.
    C. K. Elliott, G. R. Odette, G. E. Lucas andJ. W. Scheckherd, in “High Temperature/High Performance Composites”, series Vol. 120, edited by F. D. Lemkey, A. G. Evans, S. G. Fishman and J. R. Strife (MRS, Pittsburgh, 1988) p. 95.Google Scholar
  226. 226.
    G. R. Odette, H. E. Dève, C. K. Elliott, A. Hasegawa andG. E. Lucas, in “Interfaces in Metal-Ceramic Composites”, edited by R. Y. Lin, R. J. Arsenault, G. P. Martins and S. G. Fishman (TMS, Warrendale, Pennsylvania, 1990) p. 443.Google Scholar
  227. 227.
    S. M. L. Sastry andR. J. Lederich, McDonnell-Douglas Research Laboratories, St. Louis, reported at Conference on Current Topics on Intermetallics for Structural Applications, Neuchatel, Switzerland, March 1989.Google Scholar
  228. 228.
    J. C. Lin, Y. A. Chang andJ. H. Perepezko,Scripta Metall. in press.Google Scholar
  229. 229.
    K. K. Chawla, “Composite Materials — Science and Technology” (Springer, New York, 1987).Google Scholar
  230. 230.
    D. M. Dimiduk andD. B. Miracle, in “High-Temperature Ordered Intermetallic Alloys III”, series Vol. 133, edited by C. T. Liu, A. I. Taub, N. S. Stoloff and C. C. Koch (MRS, Pittsburgh, 1989) p. 349.Google Scholar
  231. 231.
    P. R. Smith andF. H. Froes,JOM 36(3) (1984) 19.Google Scholar
  232. 232.
    Idem., Chinese J. Mater. Engng No. 3 (Sum No. 100) (June 1990) 1.Google Scholar
  233. 233.
    P. R. Smith, F. H. Froes andJ. Cammett, in “Mechanical Behavior of Metal Matrix Composites”, edited by J. E. Hack and M. F. Amateau (TMS, Warrendale, Pennsylvania, 1983) p. 143.Google Scholar
  234. 234.
    Aviation Week (November 28 1988) 46.Google Scholar
  235. 235.
    M. Mittnick,SAMPE J. 26(5) (1990) 49.Google Scholar
  236. 236.
    M. A. Mittnick andJ. McElman, in Proceedings of 13th Conference on Metal Matrix Composites, Vol. 2, edited by J. D. Buckley, NASA Conference Publication No. 3054 (NASA, Washington, DC, 1990) p. 389.Google Scholar
  237. 237.
    M. Mittnick andF. H. Froes, in “Metal Matrix Composites”, edited by A. R. Begg (Arnold, Sevenoaks, Kent, UK, 1991).Google Scholar
  238. 238.
    P. K. Brindley, in “High-Temperature Ordered Inter-metallic Alloys II”, series Vol. 81, edited by N. S. Stoloff, C. C. Koch, C. T. Liu and O. Izumi (MRS, Pittsburgh, 1987) p. 419.Google Scholar
  239. 239.
    D. L. McDaniels andJ. R. Stephens, NASA Technical Memorandum 100844 (Lewis Research Center, Cleveland, Ohio, 1988).Google Scholar
  240. 240.
    S. G. Fishman, in “Interfaces in Metal-Ceramic Composites”, edited by R. Y. Lin, R. J. Arsenault, G. P. Martins and S. G. Fishman (TMS, Warrendale, Pennsylvania, 1990) p. 3.Google Scholar
  241. 241.
    S. Krishnamurthy,ibid.in “ p. 75.Google Scholar
  242. 242.
    R. P. Nimmer, R. J. Barkert, E. S. Russell andG. A. Smith, in Proceedings of ASM International Materials Week, October 1989, in press.Google Scholar
  243. 243.
    P. K. Wright, R. Nimmer, G. Smith, M. Sonsmeier andM. Brun, in “Interfaces in Metal-Ceramic Composites”, edited by R. Y. Lin, R. J. Arsenault, G. P. Martins and S. G. Fishman (TMS, Warrendale, Pennsylvania, 1990) p. 559.Google Scholar
  244. 244.
    D. S. Shong, Y-W. Kim, C. F. Yolton andF. H. Froes, in“Advances in Powder Metallurgy”, edited by T. G. Gasbarre and W. F. Jandeska Jr (MPIF, Princeton, 1989) p. 359.Google Scholar
  245. 245.
    A. G. Metcalfe andM. J. Klein, in “Composite Materials”, Vol. 1, edited by A. G. Metcalfe (Academic, New York, 1974) p. 125.Google Scholar
  246. 246.
    A. G. Metcalfe,J. Compos. Mater. 1 (1967) 356.Google Scholar
  247. 247.
    P. R. Smith, C. G. Rhodes andW. C. Revelos, in “Interfaces in Metal-Ceramic Composites”, edited by R. Y. Lin, R. J. Arsenault, G. P. Martins and S. G. Fishman (TMS, Warrendale, Pennsylvania, 1990) p. 35.Google Scholar
  248. 248.
    D. R. Schuyler, M. M. Sohi andR. Mahapatra,ibid.in “ p. 475.Google Scholar
  249. 249.
    G. Das andF. H. Froes, in Proceedings of 6th World Conference on Titanium, Vol. 2, Cannes, France, June 1988, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Les Ulis Cedex, France, 1989) p. 907.Google Scholar
  250. 250.
    G. Das, in “Advances in Powder Metallurgy”, edited by T. G. Gasbarre and W. F. Jandeska Jr (MPIF, Princeton, 1989) p. 491.Google Scholar
  251. 251.
    C. G. Rhodes, M. S. Vassiliou, M. R. Mitchell andR. A. Spurling,Met. Trans. 21A (1990) 1589.Google Scholar
  252. 252.
    S. F. Baumann, P. K. Brindley andS. D. Smith,ibid. 21A (1990) 1559.Google Scholar
  253. 253.
    D. E. Boss andJ. M. Yang, in “Intermetallic Matrix Composites”, series Vol. 194, edited by D. L. Anton, P. L. Martin, D. B. Miracle and R. McMeeking (MRS, Pittsburgh, 1990) p. 429.Google Scholar
  254. 254.
    J. H. Norman, G. H. Reynolds andL. Brewer,ibid.in p. 369.Google Scholar
  255. 255.
    S. M. Jeng, C. J. Yang, J.-M. Yang, D. G. Rosenthal andJ. Goebel,ibid.in p. 277.Google Scholar
  256. 256.
    C. G. Rhodes, C. C. Bampton andJ. A. Graves,ibid.in p. 349.Google Scholar
  257. 257.
    A. M. Ritter, E. L. Hall andN. Lewis,ibid.in p. 413.Google Scholar
  258. 258.
    J. A. Dekock, Y. A. Chang, M-X. Zhang andO. Y. Chen, in “Interfaces in Composites”, Series170, edited by C. G. Pantano and E. J. Chen (MRS, Pittsburgh, 1990) p. 173.Google Scholar
  259. 259.
    D. R. Baker, P. J. Doorbar andM. H. Loretto,ibid.in, edited by C. G. Pantano and E. J. Chen (MRS, Pittsburgh, 1990) p. 85.Google Scholar
  260. 260.
    C. J. Yang, S. M. Jeng andJ-M. Yang,Scripta Metall. 24 (1990) 469.CrossRefGoogle Scholar
  261. 261.
    J. I. Eldridge andP. K. Brindley,J. Mater. Sci. Lett. 8 (1989) 1451.CrossRefGoogle Scholar
  262. 262.
    A. K. Misra, in “Interfaces in Metal-Ceramic Composites”, edited by R. Y. Lin, R. J. Arsenault, G. P. Martins and S. G. Fishman (TMS, Warrendale, Pennsylvania, 1990) p. 85.Google Scholar
  263. 263.
    S. M. Russ,Met. Trans. 21A (1990) 1595.Google Scholar
  264. 264.
    M. Khairul Alam andS. C. Jain,JOM 42(11) (1990) 56.Google Scholar
  265. 265.
    S. Krishnamurthy andP. R. Smith, WPAFB, Ohio, Private Communication (1991).Google Scholar
  266. 266.
    C. M. Ward-Close andP. G. Partridge,J. Mater Sci. 25 (1990) 4315.CrossRefGoogle Scholar
  267. 267.
    M. L. Gambone, WRDC-TR-89-4145, Vols 1 and 2 (WPAFB, Ohio, 1989).Google Scholar
  268. 268.
    K. R. Bain, M. L. Gambone andR. D. Zordan, in “Intermetallic Matrix Composites”, series Vol. 194, edited by D. L. Anton, P. L. Martin, D. B. Miracle and R. McMeeking (MRS, Pittsburgh, 1990) p. 271.Google Scholar
  269. 269.
    P. R. Smith andW. C. Revelos, in“Fatigue '90”, Vol. 3, edited by H. Kitagawa and T. Tanaka (Materials & Components Engineering, Birmingham, UK, 1990) p. 1711.Google Scholar
  270. 270.
    P. K. Brindley, P. A. Bartolotta andR. A. Mackay, “HITEMP Review 1989 — Advanced High Temperature Engine Materials Technology Program”, Report CP-10039 (NASA, Lewis, Cleveland, Ohio, 1989) p. 52–1.Google Scholar
  271. 271.
    L. Christodoulou andJ. M. Brupbacher,Mater. Edge 7 (November/December 1990) 29.Google Scholar
  272. 272.
    L. Christodoulou, P. A. Parrish andC. R. Crowe, in “High Temperature/High Performance Composites”, series Vol. 120, edited by F. D. Lemkey, A. G. Evans, S. G. Fishman and J. R. Strife (MRS, Pittsburgh, 1988) p. 29.Google Scholar
  273. 273.
    M. L. Adams, S. L. Kampe, A. R. Harmon andL. Christodoulou, in “Advances in Powder Metallurgy”, edited by T. G. Gasbarre and W. F. Jandeska Jr (MPIF, Princeton, 1989) p. 439.Google Scholar
  274. 274.
    S. L. Kampe, J. A. Clarke andL. Christodoulou, in “Intermetallic Matrix Composites”, series Vol. 194, edited by D. L. Anton, P. L. Martin, D. B. Miracle and R. McMeeking (MRS, Pittsburgh, 1990) p. 225.Google Scholar
  275. 275.
    D. E. Larsen, Jr. S. L. Kampe andL. Christodoulou,ibid. p. 285.Google Scholar
  276. 276.
    D. E. Larsen, M. L. Adams, S. L. Kampe, L. Christodoulou andJ. D. Bryant,Scripta Metall. 24 (1990) 851.CrossRefGoogle Scholar
  277. 277.
    O. Popoola, C. Cordier, P. Pirouz andA. H. Heuer, in “Interfaces in Metal-Ceramic Composites”, edited by R. Y. Lin, R. J. Arsenault, G. P. Martins and S. G. Fishman (TMS, Warrendale, Pennsylvania, 1990) p. 465.Google Scholar
  278. 278.
    T. Christman, A. Needleman andS. Suresh,Acta Metall. 37 (1989) 3029.CrossRefGoogle Scholar
  279. 279.
    J. Rösler, J. J. Valencia, C. G. Levi, A. G. Evans andR. Mehrabian, in “Intermetallic Matrix Composites”, series Vol. 194, edited by D. L. Anton, P. L. Martin, D. B. Miracle and R. McMeeking (MRS, Pittsburgh, 1990) p. 241.Google Scholar
  280. 280.
    D. Dix,Defense News (July 16 1990) 7.Google Scholar
  281. 281.
    D. Driver, in “High Temperature Materials for Power Engineering”, Part II, edited by E. Bachelet and D. Driver (Kluwer, The Netherlands, 1990) p. 883.Google Scholar
  282. 282.
    T. M. F. Ronald,Adv. Mater. Process. 135(5) (1989) 29.Google Scholar
  283. 283.
    V. P. McConnell,Adv. Compos. (November/December 1990) 37.Google Scholar
  284. 284.
    J. Stringer,Acta Metall. 8 (1969) 758.Google Scholar
  285. 285.
    P. H. Morton andW. M. Baldwin,Trans. ASM 44 (1952) 1004.Google Scholar
  286. 286.
    A. E. Jenkins,J. Inst. Metals 84 (1955) 1.Google Scholar
  287. 287.
    P. Kofstad,J. Less-Common Metals 12 (1967) 449.CrossRefGoogle Scholar
  288. 288.
    D. Eliezer, University of Idaho, Moscow, Idaho, Work in Progress (1991).Google Scholar
  289. 289.
    Y. Umakoshi, M. Yamaguchi, T. Sakagami andT. Yamane,J. Mater. Sci. 24 (1989) 1599.CrossRefGoogle Scholar
  290. 290.
    M. Simmond, A. Spilners andO. Katz,J. Metals 7 (1955) 645.Google Scholar
  291. 291.
    C. S. Giggins andF. S. Pettit,J. Electrochem. Soc. 118 (1971) 1782.Google Scholar
  292. 292.
    S. Krol andT. Gorecki, in “Titanium Science and Technology”, Vol. 4, edited by G. Lutjering, U. Zwicker and W. Bunk (DGM, Oberursel, Germany, 1985) p. 2695.Google Scholar
  293. 293.
    A. M. Chaze, C. Coddet andG. Beranger,J. Less-Common Metals 83 (1982) 49.CrossRefGoogle Scholar
  294. 294.
    V. V. Glazova,Russian Metall. No. 2 (1967) 116.Google Scholar
  295. 295.
    D. V. Ignotov, Z. I. Kornilova, E. M. Lazaver andV. M. Popova,ibid. No. 2 (1972) 150.Google Scholar
  296. 296.
    G. Welsch andA. I. Kahveci, in “Environmental Degradation of Engineering Materials III”, edited by M. R. Louthan Jr, R. P. McNitt and R. D. Sisson Jr (Pennsylvania State University, University Park, Pennsylvania, 1987) p. 47.Google Scholar
  297. 297.
    A. I. Kahveci, G. Welsch andG. E. Wasielewski, in Proceedings of 6th World Conference on Titanium, Vol. 2, Cannes, France, June 1988, edited by P. Lacombe, R. Tricot and G. Beranger (Les Editions de Physique, Les Ulis Cedex, France, 1989) p. 1015.Google Scholar
  298. 298.
    S. J. Balsone, in “Oxidation of High Temperature Intermetallics”, edited by T. Grobstein and J. Doychak (TMS-AIME, Warrendale, Pennsylvania, 1989) p. 219.Google Scholar
  299. 299.
    S. J. Balsone, T. Nicholas, D. C. Maxwell andM. Khobaib, in “Elevated Temperature Crack Growth”, edited by S. Mall and T. Nichols (American Society for Mechanical Engineering, New York, 18, 1990) p. 87.Google Scholar
  300. 300.
    M. Kabbaj, A. Galerie andM. Caillet,J. Less-Common Metals 108 (1985) 1.CrossRefGoogle Scholar
  301. 301.
    D. S. Shih, G. K. Scarr andG. E. Wasielewski,JOM 39 (7) (1987) 7.Google Scholar
  302. 302.
    D. E. Matejczyk andR. P. Jewett, in Proceedings of the 2nd NASP Hydrogen Materials Interaction Workshop, Publication No. 1004, edited by H. G. Nelson (NASA, Moffett Field, California, 1988) p. 137.Google Scholar
  303. 303.
    T. Fox, D. B. Knorr andN. S. Stoloff, Rensselaer Polytechnic Institute, Troy, New York, Unpublished Work (1989).Google Scholar
  304. 304.
    D. Eliezer andF. H. Froes, University of Idaho, Moscow, Idaho, work in progress.Google Scholar
  305. 305.
    J. H. Holbrook, H. J. Cialone andB. S. Majumdar, in Proceedings of 3rd NASP Hydrogen Materials Interactions, edited by H. G. Nelson (NASA, Moffett Field, California, 1989) in press.Google Scholar
  306. 306.
    W. Y. Chu, A. W. Thompson andJ. C. Williams, in “Hydrogen Effects on Materials Behavior”, edited by N. R. Moody and A. W. Thompson (TMS, Warrendale, Pennsylvania, 1990) p. 543.Google Scholar
  307. 307.
    M. Gao, J. B. Boodey andR. P. Wei,Scripta Met. Mater. 24 (1990) 2135.CrossRefGoogle Scholar
  308. 308.
    D. Eliezer, E. Manor andF. H. Froes, in “Hydrogen Effects on Materials Behavior”, edited by N. R. Moody and A. W. Thompson (TMS, Warrendale, Pennsylvania, 1990) p. 523.Google Scholar
  309. 309.
    E. Manor andD. Eliezer,Scripta Metall. 23 (1989) 1313.CrossRefGoogle Scholar
  310. 310.
    Idem, Scripta Met. Mater. 24 (1990) 129.CrossRefGoogle Scholar
  311. 311.
    H. G. Nelson, in “Space Age Metals Technology”, edited by F. H. Froes and R. A. Cull (SAMPE, Covina, California, 1988) p. 310.Google Scholar
  312. 312.
    L. G. Fritzemeir andM. A. Jacinto, in “Hydrogen Effects on Materials Behavior”, edited by N. R. Moody and A. W. Thompson (TMS, Warrendale, Pennsylvania, 1990) p. 533.Google Scholar
  313. 313.
    A. A. Sheimker andS. M. El-Soudani, in Proceedings of 3rd NASP Hydrogen Materials Interactions, edited by H. G. Nelson (NASA, Moffett Field, California, 1989) in press.Google Scholar
  314. 314.
    D. E. Matejczyk andC. G. Rhodes,Scripta Met. Mater. 24 (1990) 1369.CrossRefGoogle Scholar
  315. 315.
    L. Christodoulou andJ. A. Clarke, in “Hydrogen Effects on Materials Behavior”, edited by N. R. Moody and A. W. Thompson (TMS, Warrendale, Pennsylvania, 1990) p. 515.Google Scholar
  316. 316.
    F. H. Froes, J. J. deBarbadillo andC. Suryanarayana, in “Structural Applications of Mechanical Alloying”, edited by F. H. Froes and J. J. de Barbadillo (ASM International, Materials Park, Ohio, 1990) p. 1.Google Scholar
  317. 317.
    R. N. Hadcock,J. Aircraft 17 (9) (1980) 609.CrossRefGoogle Scholar
  318. 318.
    B. Dogan, “Intermetallic Alloys: Deformation, Mechanical and Fracture Behavior”, Report 88/E/53 (GKSS-Forschungszentrum Geesthacht GmBH, Germany, 1988).Google Scholar
  319. 319.
    B. Dogan, R. Wagner andP. A. Beaven,Scripta Met. Mater. 25 (1991) 773.CrossRefGoogle Scholar
  320. 320.
    Y. Nishiyama, T. Miyashita, S. Isobe andT. Noda, in “High-Temperature Aluminides and Intermetallics”, edited by S. H. Whang, C. T. Liu, D. P. Pope and J. O. Stiegler (TMS, Warrendale, Pennsylvania, 1990) p. 557.Google Scholar
  321. 321.
    R. Delagi (TI, Attleboro, Massachusetts), Private Communications (1990).Google Scholar
  322. 322.
    C. Bassi, J. A. Peters andJ. Wittenauer,JOM 41 (9) (1989) 18.Google Scholar
  323. 323.
    N. Masahashi, M. Matsuo, Y. Mizuhara, M. Kimura andK. Hashimoto, in “Microstructure/Property Relationships in Titanium Alloys and Titanium Aluminides”, edited by Y-W. Kim and R. R. Boyer (TMS, Warrendale, Pennsylvania, 1991) in press.Google Scholar
  324. 324.
    K. Hashimoto, N. Masahashi, Y. Mizuhara, H. Fujii andM. Matsuo,ibid.in“Google Scholar
  325. 325.
    J. C. Williams andL. A. Johnson, GE/Aircraft Engines, Evendale, Ohio, Private Communication (1990).Google Scholar
  326. 326.
    D. P. DeLuca andB. A. Cowles, WRDC-TR-89-4136 (WPAFB, Ohio, 1989).Google Scholar
  327. 327.
    J. Lincoln, in 14th Symposium of International Committee on Aeronautical Fatigue, edited by D. L. Simpson (Engineering Materials Advisory Services, Warley, W. Midlands, UK, 1987) p. 619.Google Scholar
  328. 328.
    H. A. Lipsitt, in “Advanced High Temperature Alloys: Processing and Properties”, edited by S. S. Allen, R. M. Pelloux and R. Widmer (ASM, Metals Park, Ohio, 1986) p. 157.Google Scholar
  329. 329.
    E. K. Hoffman, R. K. Bird andT. T. Bales, in “Light-Weight Alloys for Aerospace Applications”, edited by E. H. Chia and N. J. Kim (TMS-AIME, Warrendale, Pennsylvania, 1989) p. 481.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • F. H. Froes
    • 1
  • C. Suryanarayana
    • 1
  • D. Eliezer
    • 1
  1. 1.Institute for Materials and Advanced Processes, College of Mines and Earth ResourcesUniversity of IdahoMoscowUSA

Personalised recommendations