Journal of Materials Science

, Volume 11, Issue 11, pp 2082–2086 | Cite as

Ultraviolet absorption of cerium(III) and cerium(IV) in some simple glasses

  • A. Paul
  • M. Mulholland
  • M. S. Zaman
Papers

Abstract

The optical absorption spectra of cerium (III) and cerium (IV) in Na2O-B2O3, Na2O-SiO2, Na2O-P2O5 glasses, and in H2O-H2SO4 and H2O-H3PO4 solutions have been studied. Individual molar extinction coefficients of cerium (III) and cerium (IV) at different wavelengths (350 to 200 nm) have been estimated. In all the glasses and solutions, cerium (IV) produces a very strong and broad charge transfer band around 250 nm; the intensity, half-width, and position of this band change appreciably with glass composition. Cerium (III) in glass and in aqueous solution produces a number of absorption bands in the ultraviolet region corresponding to the f → d transitions. The cerium (III) bands are sharp and well resolved in Na2O-P2O5 and in low-alkali borate glasses; the sharpness of resolution deteriorates in Na2O-SiO2, and in high-alkali borate glasses. The intensity of cerium (III) absorption also changes with glass composition. In all the glasses the molar extinction coefficient of cerium (IV) is 5 to 10 times stronger than that of cerium (III).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Crookes,Phil. Trans. (Royal Soc., London) A214 (1914) 1.Google Scholar
  2. 2.
    Report by Borax and Chemicals Ltd,Glass 36 (6) (1959) 278.Google Scholar
  3. 3.
    M. Glanati,ibid 43 (1) (1966) 12.Google Scholar
  4. 4.
    J. A. Kapnicky andW. A. Koehler,J. Amer. Ceram. Soc. 31 (11) (1948) 321.Google Scholar
  5. 5.
    A. P. Herring andJ. L. Drobnick,The Glass Industry, July, August, September (1970) 316, 350, 394.Google Scholar
  6. 6.
    S. D. Stookey andF. W. Schuler, IV Congres International du Verre, Paris 2–7 July, (1956) p. 390.Google Scholar
  7. 7.
    J. Nebrensky, “Coloured Glass” (Joblonec, Czechoslovakia, 1965) p. 173.Google Scholar
  8. 8.
    A. M. Bishay,J. Amer. Ceram. Soc. 45 (8) 45 389.Google Scholar
  9. 9.
    G. H. Sigel Jun. andB. D. Evans,Amer. Ceram. Soc. Bull. 54 (9) (1975) 814.Google Scholar
  10. 10.
    A. Paul andR. W. Douglas,Phys. Chem. Glasses 6 (6) (1965) 212.Google Scholar
  11. 11.
    K. Fuwa,J. Jap. Ceram. Soc. (Ass.) 32 (1974) 91.Google Scholar
  12. 12.
    V. Gottardi, G. Paoletti andM. Tornati, Advances in Glass Technology, VI International Congress in Glass, Washington, D.C. (1962) p. 412.Google Scholar
  13. 13.
    M. Tashiro, N. Soga andS. Sakka,J. Ceram. Ass. Japan 68 (773) (1960) 132.Google Scholar
  14. 14.
    P. Rudd, Ph. D. Thesis, Univeristy of Sheffield (1974).Google Scholar
  15. 15.
    F. Vernon,J. Inorg. Nucl. Chem. 32 (1970) 1005.CrossRefGoogle Scholar
  16. 16.
    N. J. Weber,J. Appl. Phys. 44 (7) (1973) 3205.CrossRefGoogle Scholar
  17. 17.
    J. A. Duffy,Phys. Chem. Glasses 13 (3) (1972) 65.Google Scholar
  18. 18.
    B. D. Mcswain, N. F. Borrelli andGouq Jen Su. Phys. Chem. Glasses 4 (1) (1963) 1.Google Scholar

Copyright information

© Chapman and Hall Ltd 1976

Authors and Affiliations

  • A. Paul
    • 1
  • M. Mulholland
    • 1
  • M. S. Zaman
    • 1
  1. 1.Department of Cermacis, Glasses and PolymersThe University of SheffieldUK

Personalised recommendations