Advertisement

Hyperfine Interactions

, Volume 31, Issue 1–4, pp 303–308 | Cite as

Spin dynamics in crystalline and amorphous DyAg

  • G. M. Kalvius
  • L. Asch
  • D. R. Noakes
  • R. Keitel
  • J. H. Brewer
  • E. J. Ansaldo
  • F. J. Litterst
  • B. Boucher
  • J. Chappert
  • A. Yaouanc
  • T. Yamazaki
  • K. Nagamine
  • K. Nishiyama
  • O. Hartmann
  • R. Wäppling
Spin Dynamics

Abstract

Crystalline (cr-) Dyag [CsC] structure] orders antiferro-magnetically with TN≅60K; amorphous (am-) DyAg ferro-magnetically with TC≈-18K. We measured the longitudinal field (LF) μ+SR relaxation functions GZZ(t) for 5K<T<300K using surface muons. In the paramagnetic state. cr-DyAg gives an exponential GZZ (t) in the relaxation rate rising first slowly then more rapidlynear TN; no decoupling is observed in LF up to 0.4T. In the ordered state we see a Lorentzian Kubo-Toyabe GZZ(t), becoming nearly static at the lowest temperatures. Its static width is very narrow (Δ≈-7 MHz), and full dceoupling is achieved here in 0.1 T. On approaching TN, the fluctuation rate and the static width increase mootonically bt the field distribution remains Loratzian. A LF of 0.4T is then insufficient to quench the fast exponential relaxation. In paramagnetic am-DyAg, the μ+ depolarization is always much faster then in cr-DyAg. At lower temperatures it is better described by a root-exponential than an exponential GZZ(t). Below TC an exponentially relaxing signal with 1/3 amplitude is seen. The decoupling effect of LF up to 0.4T was negligible at all temperatures.

Keywords

Thin Film Relaxation Rate Field Distribution Relaxation Function Paramagnetic State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G.M. Kalvius, F.J. Litterst, L. Asch and J. Chappert, Hyperfine inter 8 actions24 (1985), 709.CrossRefGoogle Scholar
  2. [2]
    O. Hartmann, E. Karlsson, R. Wäppling, J. Chappert, A. Yaouanc, L. Asch, and L. Asch, and G.M. Kalvius, Journ. Phys. C (1986), in press.Google Scholar
  3. [3]
    Y.J. Uemura, T. Yamazaki, D.R. Harshman, M. Senba and E.J. Ansaldo, Phys. Rev.B31 (1985), 546. K. Emmerich, E. Lippelt, R. Neuhas, H. Pinkvos, Ch. Schwink, F.N. Gygax, A. Hintermann, A. Schenck, W. Studer and A.J. van der Wal, ibid, 7226.CrossRefADSGoogle Scholar
  4. [4]
    T. Moriya, Progr. Theor. Phys. 16 (1956), 41.Google Scholar
  5. [5]
    E. Wäckelgård, O. Hartmann, E. Karlsson, R. Wäppling, L. Asch, G.M. Kalvius, J. Chaptert and Y Yaouanc, This conference (paper D09).Google Scholar

Copyright information

© J.C. Baltzer A.G., Scientific Publishing Company 1986

Authors and Affiliations

  • G. M. Kalvius
    • 1
  • L. Asch
    • 1
  • D. R. Noakes
    • 2
  • R. Keitel
    • 2
  • J. H. Brewer
    • 2
  • E. J. Ansaldo
    • 3
  • F. J. Litterst
    • 1
  • B. Boucher
    • 4
  • J. Chappert
    • 5
  • A. Yaouanc
    • 5
  • T. Yamazaki
    • 6
  • K. Nagamine
    • 6
  • K. Nishiyama
    • 6
  • O. Hartmann
    • 7
  • R. Wäppling
    • 7
  1. 1.Technical UniversityMunichFGR
  2. 2.TRIUMFVancouverCanada
  3. 3.University of SaskatchewanSaskatoonCanada
  4. 4.CEN SaclayFance
  5. 5.CEN GrenobleFrance
  6. 6.University of TokyoJapan
  7. 7.University of UppsalaSweden

Personalised recommendations