Skip to main content
Log in

Evozierte Enthemmung und Bahnungsminderung in corticalen Nervenzellen

Intracelluläre Ableitungen vom sensomotorischen Cortex der Katze

Evoked disinhibition and disfacilitation in neurons of the cat's sensorimotor cortex

Intracellular recordings

  • Published:
Archiv für Psychiatrie und Nervenkrankheiten Aims and scope Submit manuscript

Summary

In pyramidal cells of the cat's sensorimotor cortex two kinds of hyperpolarization i.e. of either short (less than 100 msec) or long duration (up to 200 msec or more) can be evoked. Both begin with an inhibitory postsynaptic potential (IPSP) of up to 60 msec duration, which consists of a series of single steps which can be in phase with the intervals between action potentials of high frequency discharges probably from interneurons.

The IPSP of evoked hyperpolarization ofshort duration is followed by adisinhibition which obviously corresponds to a discharging pause of inhibitory interneurons which are responsible for establishing a tonic background inhibition on pyramidal cells.

The IPSP of evoked hyperpolarization oflong duration is followed by disfacilitation in addition to the disinhibition. Thedisfacilitation might be caused by an inhibition of excitatory interneurons which are responsible for establishing a tonic background excitation on pyramidal cells. The long-duration hyperpolarization is followed bylate facilitation which can last up to 600 msec.

Zusammenfassung

In Pyramidenzellen des sensomotorischen Cortex der Katze lassen sich zwei Arten reizbedingter Hyperpolarisation unterschiedlicher Dauer auslösen. Beide beginnen mit einem inhibitorischen postsynaptischen Potential (IPSP), das bis zu 60 msec andauern kann. Es wird aus einzelnen IPSP-Stufen aufgebaut, die zeitlich mit den Aktionspotentialen hochfrequent entladender Zwischenneurone übereinstimmen können.

Bei derkurzdauernden Hyperpolarisation (unter 100 msec) folgt den IPSP eineEnthemmung (Disinhibition), offenbar als Folge einer Entladungspause in solchen hemmenden Zwischenneuronen, die eine tonische Hintergrundhemmung auf Pyramidenzellen ausüben.

Bei derlangdauernden Hyperpolarisation (200 msec und mehr) folgt den IPSP außer einer Enthemmung zusätzlich eineBahnungsminderung (Disfacilitation), vermutlich wegen einer Hemmung in erregenden Zwischenneuronen, die tonisch erregend auf Pyramidenzellen einwirken. Der evozierten langdauernden Hyperpolarisation schließt sich einespäte Bahnung (Facilitation) an, die bis zu 600 msec andauern kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Andersen, P., Eccles, J. C., Løyning, Y.: Recurrent inhibition in the hippocampus with identification of the inhibitory cell and its synapses. Nature (Lond.)198, 540–542 (1963)

    CAS  Google Scholar 

  2. Asanuma, H., Brooks, V. B.: Recurrent cortical effects following stimulation of internal capsule. Arch. ital. Biol.103, 220–246 (1965)

    PubMed  CAS  Google Scholar 

  3. Ayala, G. F., Matsumoto, H., Gumnit, R. J.: Excitability changes and inhibitory mechanisms in neocortical neurons during seizures. J. Neurophysiol.33, 73–85 (1970)

    PubMed  CAS  Google Scholar 

  4. Brooks, V. B., Asanuma, H.: Recurrent cortical effects following stimulation of medullary pyramid. Arch. ital. Biol.103, 247–278 (1965)

    PubMed  CAS  Google Scholar 

  5. Brooks, V. B., Wilson, V. J.: Recurrent inhibition in the cat's spinal cord. J. Physiol. (Lond.)146, 380–391 (1959)

    CAS  Google Scholar 

  6. ten Bruggencate, G., Teichmann, R., Weller, E.: Neuronal activity in the lateral vestibular nucleus of the cat. I. Patterns of postsynaptic potentials and discharges in Deiters neurones evoked by stimulation of the spinal cord. Pflügers Arch.337, 119–134 (1972)

    Article  PubMed  Google Scholar 

  7. Buchwald, N. A., Hull, C. D., Trachtenberg, M. C.: Concomitant behavioral and neuronal inhibition and disinhibition in response to subcortical stimulation. Exp. Brain Res.4, 58–72 (1967)

    Article  PubMed  CAS  Google Scholar 

  8. Colonnier, M.: The structural design of the neo-cortex. In: Brain and conscious experience, J. C. Eccles (ed.), pp. 1–23. Berlin-Heidelberg-New York: Springer 1966

    Google Scholar 

  9. Creutzfeldt, O., Baumgartner, G., Schoen, L.: Reaktionen einzelner Neurone des sensomotorischen Cortex nach elektrischen Reizen. Arch. Psychiat. Nervenkr.194, 597–619 (1956)

    Article  PubMed  Google Scholar 

  10. Creutzfeldt, O., Struck, G.: Neurophysiologie und Morphologie der chronisch isolierten Cortexinsel der Katze: Hirnpotentiale und Neuronentätigkeit einer isolierten Nervenzellpopulation ohne afferente Fasern. Arch. Psychiat. Nervenkr.203, 708–731 (1962)

    Article  PubMed  CAS  Google Scholar 

  11. Creutzfeldt, O., Watanabe, S., Lux, H. D.: Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroenceph. clin. Neurophysiol.20, 1–18 (1966)

    Article  PubMed  CAS  Google Scholar 

  12. Curtis, D. R., Ryall, R. W.: The synaptic excitation of Renshaw cells. Exp. Brain Res.2, 81–96 (1966)

    PubMed  CAS  Google Scholar 

  13. Demetrescu, M.: Cell firing related to active inhibition in visual cortex of cats. Electroenceph. clin. Neurophysiol.27, 709 (1969)

    PubMed  CAS  Google Scholar 

  14. Dreifuss, J. J., Kelly, J. S., Krnjević, K.: Cortical inhibition and gammaaminobutyric acid. Exp. Brain Res.9, 137–154 (1969)

    Article  PubMed  CAS  Google Scholar 

  15. Eccles, J. C.: The physiology of synapses. Berlin-Heidelberg-New York: Springer 1964

    Google Scholar 

  16. Eccles, J. C., Fatt, P., Koketsu, K.: Cholinergic and inhibitory synapses in a pathway from motoraxon collaterals to motoneurones. J. Physiol. (Lond.)126, 524–562 (1954)

    CAS  Google Scholar 

  17. Eccles, J. C.: The inhibitory pathways of the central nervous system. Vol. 9: The Sherrington lectures. Liverpool: University Press 1969

    Google Scholar 

  18. Eccles, J. C., Ecoles, R. M., Iggo, A., Lundberg, A.: Electrophysiological investigations on Renshaw cells. J. Physiol. (Lond.)159, 461–478 (1961)

    CAS  Google Scholar 

  19. Eccles, J. C., Ito, M., Szentágothai, J.: The cerebellum as a neuronal machine. Berlin-Heidelberg-New York: Springer 1967

    Google Scholar 

  20. Frank, K., Fuortes, M. G. F.: Stimulation of spinal motoneurons with intracellular electrodes. J. Physiol. (Lond.)134, 451–470 (1956)

    CAS  Google Scholar 

  21. Glötzner, F., Grüsser, O.-J.: Membranpotential und Entladungsfolgen cortioaler Zellen: EEG und corticales DC-Potential bei generalisierten Krampfanfällen. Arch. Psychiat. Nervenkr.210, 313–339 (1968)

    Article  PubMed  Google Scholar 

  22. Holubář, J., Hanke, B., Malík, V.: Intracellular recording from cortical pyramids and small interneurons as identified by subsequent staining with the recording microelectrode. Exp. Neurol.19, 257–264 (1967)

    Article  PubMed  Google Scholar 

  23. Hull, C. D., Buchwald, N. A., Vieth, J.: Cortical intracellular analyses of responses to inhibitory and disinhibitory stimuli. Brain Res.6, 12–21 (1967)

    Article  PubMed  CAS  Google Scholar 

  24. Humphrey, D. R.: Re-analysis of the antidromic cortex response: II. On the contribution of cells discharge and PSPs to the evoked potentials. Electroenceph. clin. Neurophysiol.25, 421–442 (1968)

    Article  PubMed  CAS  Google Scholar 

  25. Ito, M., Kawai, N., Udo, M., Sato, N.: Cerebellar-evoked disinhibition in dorsal Deiter's neurons. Exp. Brain Res.6, 247–264 (1968)

    Article  PubMed  CAS  Google Scholar 

  26. Jasper, H., Stefanis, C.: Intracellular oscillatory rhythms in pyramidal tract neurones in the cat. Electroenceph. clin. Neurophysiol.18, 541–553 (1965)

    Article  PubMed  CAS  Google Scholar 

  27. Kameda, K., Nagel, R., Brooks, V. B.: Some quantitative aspects of pyramidal collateral inhibition. J. Neurophysiol.32, 540–553 (1969)

    PubMed  CAS  Google Scholar 

  28. Kandel, E. R., Spencer, W. A.: Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing. J. Neurophysiol.24, 243–254 (1961)

    PubMed  CAS  Google Scholar 

  29. Kandel, E. R., Spencer, W. A., Brinley, F. J.: Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization. J. Neurophysiol.24, 225–242 (1961)

    PubMed  CAS  Google Scholar 

  30. Kehoe, J.: Ionic mechanisms of a two-component cholinergic inhibition in Aplysia neurones. J. Physiol. (Lond.)225, 85–114 (1972)

    CAS  Google Scholar 

  31. Klee, M. R., Lux, H. D.: Intracelluläre Untersuchungen über den Einfluß hemmender Potentiale im motorischen Cortex. 2. Die Wirkung elektrischer Reizung des Nucleus caudatus. Arch. Psychiat. Nervenkr.203, 667–689 (1962)

    Article  PubMed  CAS  Google Scholar 

  32. Klee, M. R., Offenloch, K.: Postsynaptic potentials and spike patterns during augmenting responses in cat's motor cortex. Science143, 488–489 (1964)

    PubMed  CAS  Google Scholar 

  33. Koike, H., Okada, Y., Oshima, T., Takahashi, K.: Accomodative behavior of cat pyramidal tract cells investigated with intracellular injection of currents. Exp. Brain Res.5, 173–188 (1968)

    PubMed  CAS  Google Scholar 

  34. Krnjević, K., Schwartz, S.: The action of gamma-aminobutyric acid on cortical neurones. Exp. Brain. Res.3, 320–336 (1967)

    PubMed  Google Scholar 

  35. Krnjević, K., Randić, M., Straughan, D. W.: An inhibitory process in the cerebral cortex. J. Physiol. (Lond.)184, 16–48 (1966)

    Google Scholar 

  36. Krnjević, K., Randić, M., Straughan, D. W.: Nature of a cortical inhibitory process. J. Physiol. (Lond.)184, 49–77 (1966)

    Google Scholar 

  37. Kubota, M., Sakata, H., Takahashi, K., Uno, M.: Location of recurrent inhibitory synapse on cat pyramidal tract cell. Proc. Jap. Acad.41, 195–197 (1965)

    Google Scholar 

  38. Landau, W. M., Bishop, G. H., Clare, M. H.: Site of excitation in stimulation of the motor cortex. J. Neurophysiol.28, 1206–1222 (1965)

    PubMed  CAS  Google Scholar 

  39. Leblanc, F. E., Cordeau, J. P.: Modulation of pyramidal tract cell activity by ventrolateral thalamic regions: Its possible role in tremorgenic mechanisms. Brain Res.14, 255–270 (1969)

    Article  PubMed  CAS  Google Scholar 

  40. Lebovik, R., Dichter, M., Spencer, W. A.: Recurrent excitation in hippocampus. Fed. Proc.28, 455 (1969)

    Google Scholar 

  41. Li, C.-L.: The inhibitory effect of stimulation of a thalamic nucleus on neuronal activity in the motor cortex. J. Physiol. (Lond.)144, 40–53 (1956)

    Google Scholar 

  42. Li, C. -L.: Activity of interneurons in the motor cortex. In: Reticular Formation of the Brain. H. H. Jasper (ed.), pp. 459–472. Boston: Little, Brown & Co. 1958

    Google Scholar 

  43. Li, C.-L.: Cortical intracellular synaptic potentials amd direct cortical stimula-tion. J. cell. comp. Physiol.60, 1–16 (1962)

    Article  PubMed  CAS  Google Scholar 

  44. Lux, H. D., Klee, M. R.: Intracelluläre Untersuchungen über den Einfluß hemmender Potentiale im motorischen Cortex. 1. Wirkung elektrischer Reizung unspezifischer Thalamuskerne. Arch. Psychiat. Nervenkr.203, 648–666 (1962)

    Article  PubMed  CAS  Google Scholar 

  45. Marin-Padilla, M.: Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: A Golgi study. Brain Res.14, 633–646 (1969)

    Article  PubMed  CAS  Google Scholar 

  46. McIlwain, J. T., Creutzfeldt, O.: Microelectrode study of synaptic excitation and inhibition in the lateral geniculate nucleus of the cat. J. Neurophysiol.30, 1–21 (1967)

    Google Scholar 

  47. Nacimiento, A. C., Lux, H. D., Creutzfeldt, O. D.: Postsynaptische Potentiale von Nervenzellen des motorischen Cortex nach elektrischer Reizung spezifischer und unspezifischer Thalamuskerne. Pflügers Arch. ges. Physiol.281, 152–169 (1964)

    Article  CAS  Google Scholar 

  48. Patton, H. D., Amassian, V. E.: Single-and multiple-unit analysis of cortical stage of pyramidal tract activation J. Neurophysiol.17, 345–363 (1954)

    PubMed  CAS  Google Scholar 

  49. Phillips, C. G.: Intracellular records from Betz cells in the cat. Quart. J. exp. Physiol.41, 58–69 (1956)

    PubMed  CAS  Google Scholar 

  50. Phillips, C. G.: Actions of antidromic pyramidal volleys on single Betz cells in the cat. Quart. J. exp. Physiol.44, 1–25 (1959)

    PubMed  CAS  Google Scholar 

  51. Phillis, J. W.: The Pharmacology of Synapses. London-New York-Paris-Braunschweig: Pergamon Press 1970

    Google Scholar 

  52. Pollen, D. A., Lux, H. D.: Conductance changes during inhibitory postsynaptic potentials in normal and strychninized cortical neurones. J. Neurophysiol.29, 369–381 (1966)

    PubMed  CAS  Google Scholar 

  53. Purpura, D. P., Shofer, R. J.: Cortical intracellular potentials during augmenting and recruiting responses. I. Effects of injected hyperpolarizing currents on evoked membrane potential changes. J. Neurophysiol.27, 117–132 (1964)

    PubMed  CAS  Google Scholar 

  54. Renshaw, B.: Central effects of centripetal impulses in axons of spinal ventral roots. J. Neurophysiol.9, 191–204 (1946)

    Google Scholar 

  55. Schlag, J.: Reactions and interactions to stimulation of the motor cortex of the cat. J. Neurophysiol.29, 44–71 (1966)

    PubMed  CAS  Google Scholar 

  56. Spehlmann, R., Creutzfeldt, O. D., Jung, R.: Neuronale Hemmung im motorischen Cortex nach elektrischer Reizung des Caudatum. Arch. Psychiat. Nervenkr.201, 332–354 (1960)

    Article  Google Scholar 

  57. Stefanis, C., Jasper, H.: Intracellular microelectrode studies of antidromic responses in cortical pyramidal tract neurons. J. Neurophysiol.27, 828–854 (1964)

    PubMed  CAS  Google Scholar 

  58. Stefanis, C., Jasper, H.: Recurrent collateral inhibition in pyramidal tract neurons. J. Neurophysiol.27, 855–877 (1964)

    Article  PubMed  CAS  Google Scholar 

  59. Suzuki, H., Tukahara, Y.: Recurrent inhibition of the Betz cell. Jap. J. Physiol.13, 386–398 (1963)

    CAS  Google Scholar 

  60. Szentágothai, J.: The synapses of short local neurons in the cerebral cortex. Symp. Biol. hung.5, 251–276 (1965)

    Google Scholar 

  61. Takahashi, K., Kubota, K., Uno, M.: Recurrent facilitation in cat pyramidal tract neurons. J. Neurophysiol.30, 22–34 (1967)

    Google Scholar 

  62. Toyama, K., Tsukahara, N., Uno, M.: Nature of the cerebellar influences upon the red nucleus neurons. Exp. Brain Res.4, 292–309 (1968)

    Article  PubMed  CAS  Google Scholar 

  63. Vieth, J. B., Kneise, U.: Depression und Potentiation in corticalen Zellen. Pflügers Arch.307, 126 (1969)

    Google Scholar 

  64. Vieth, J. B., Kneise, U., Komposch, K.: Cortical intracellular responses to interacting stimuli. Electroenceph. clin. Neurophysiol.27, 680–681 (1969)

    Google Scholar 

  65. Wilson, V. J., Burgess, P. R.: Disinhibition in the cat spinal cord. J. Neurophysiol.25, 392–404 (1962)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Unterstützt von der Deutschen Forschungsgemeinschaft (Vi 36/1-5).

Die Deutsche Forschungsgemeinschaft gewährte dankenswerterweise eine großzügige finanzielle Unterstützung (Vi 36/1-5). Eine große Hilfe war der umfangreiche Literaturdienst von: University of California Brain Information Service, part of the NINDS Neurological Information Network, supported by contract No. 70-2063; und von: Parkinson's Disease & Related Disorders, Citations from the Literature, supported by NINDS Neurological Information Network.

Herrn Dr. M. R. Klee, Max Planck-Institut für Hirnforschung, Frankfurt/Main, sei besonders für die Diskussion der Befunde gedankt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieth, J., Kneise, U. & Käferlein, J. Evozierte Enthemmung und Bahnungsminderung in corticalen Nervenzellen. Arch. F. Psychiatr. U. Z. Neur. 218, 271–290 (1974). https://doi.org/10.1007/BF02401385

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02401385

Key words

Schlüsselwörter

Navigation