Advertisement

Archiv für Psychiatrie und Nervenkrankheiten

, Volume 218, Issue 3, pp 271–290 | Cite as

Evozierte Enthemmung und Bahnungsminderung in corticalen Nervenzellen

Intracelluläre Ableitungen vom sensomotorischen Cortex der Katze
  • Jürgen Vieth
  • Ullrich Kneise
  • Johanna Käferlein
Article

Zusammenfassung

In Pyramidenzellen des sensomotorischen Cortex der Katze lassen sich zwei Arten reizbedingter Hyperpolarisation unterschiedlicher Dauer auslösen. Beide beginnen mit einem inhibitorischen postsynaptischen Potential (IPSP), das bis zu 60 msec andauern kann. Es wird aus einzelnen IPSP-Stufen aufgebaut, die zeitlich mit den Aktionspotentialen hochfrequent entladender Zwischenneurone übereinstimmen können.

Bei derkurzdauernden Hyperpolarisation (unter 100 msec) folgt den IPSP eineEnthemmung (Disinhibition), offenbar als Folge einer Entladungspause in solchen hemmenden Zwischenneuronen, die eine tonische Hintergrundhemmung auf Pyramidenzellen ausüben.

Bei derlangdauernden Hyperpolarisation (200 msec und mehr) folgt den IPSP außer einer Enthemmung zusätzlich eineBahnungsminderung (Disfacilitation), vermutlich wegen einer Hemmung in erregenden Zwischenneuronen, die tonisch erregend auf Pyramidenzellen einwirken. Der evozierten langdauernden Hyperpolarisation schließt sich einespäte Bahnung (Facilitation) an, die bis zu 600 msec andauern kann.

Schlüsselwörter

Motorischer Cortex Pyramidenzellen Zwischenneurone IPSP Enthemmung Bahnungsminderung 

Evoked disinhibition and disfacilitation in neurons of the cat's sensorimotor cortex

Intracellular recordings

Summary

In pyramidal cells of the cat's sensorimotor cortex two kinds of hyperpolarization i.e. of either short (less than 100 msec) or long duration (up to 200 msec or more) can be evoked. Both begin with an inhibitory postsynaptic potential (IPSP) of up to 60 msec duration, which consists of a series of single steps which can be in phase with the intervals between action potentials of high frequency discharges probably from interneurons.

The IPSP of evoked hyperpolarization ofshort duration is followed by adisinhibition which obviously corresponds to a discharging pause of inhibitory interneurons which are responsible for establishing a tonic background inhibition on pyramidal cells.

The IPSP of evoked hyperpolarization oflong duration is followed by disfacilitation in addition to the disinhibition. Thedisfacilitation might be caused by an inhibition of excitatory interneurons which are responsible for establishing a tonic background excitation on pyramidal cells. The long-duration hyperpolarization is followed bylate facilitation which can last up to 600 msec.

Key words

Motor Cortex Pyramidal Cells Interneurons IPSP Disinhibition Disfacilitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Andersen, P., Eccles, J. C., Løyning, Y.: Recurrent inhibition in the hippocampus with identification of the inhibitory cell and its synapses. Nature (Lond.)198, 540–542 (1963)Google Scholar
  2. 2.
    Asanuma, H., Brooks, V. B.: Recurrent cortical effects following stimulation of internal capsule. Arch. ital. Biol.103, 220–246 (1965)PubMedGoogle Scholar
  3. 3.
    Ayala, G. F., Matsumoto, H., Gumnit, R. J.: Excitability changes and inhibitory mechanisms in neocortical neurons during seizures. J. Neurophysiol.33, 73–85 (1970)PubMedGoogle Scholar
  4. 4.
    Brooks, V. B., Asanuma, H.: Recurrent cortical effects following stimulation of medullary pyramid. Arch. ital. Biol.103, 247–278 (1965)PubMedGoogle Scholar
  5. 5.
    Brooks, V. B., Wilson, V. J.: Recurrent inhibition in the cat's spinal cord. J. Physiol. (Lond.)146, 380–391 (1959)Google Scholar
  6. 6.
    ten Bruggencate, G., Teichmann, R., Weller, E.: Neuronal activity in the lateral vestibular nucleus of the cat. I. Patterns of postsynaptic potentials and discharges in Deiters neurones evoked by stimulation of the spinal cord. Pflügers Arch.337, 119–134 (1972)CrossRefPubMedGoogle Scholar
  7. 7.
    Buchwald, N. A., Hull, C. D., Trachtenberg, M. C.: Concomitant behavioral and neuronal inhibition and disinhibition in response to subcortical stimulation. Exp. Brain Res.4, 58–72 (1967)CrossRefPubMedGoogle Scholar
  8. 8.
    Colonnier, M.: The structural design of the neo-cortex. In: Brain and conscious experience, J. C. Eccles (ed.), pp. 1–23. Berlin-Heidelberg-New York: Springer 1966Google Scholar
  9. 9.
    Creutzfeldt, O., Baumgartner, G., Schoen, L.: Reaktionen einzelner Neurone des sensomotorischen Cortex nach elektrischen Reizen. Arch. Psychiat. Nervenkr.194, 597–619 (1956)CrossRefPubMedGoogle Scholar
  10. 10.
    Creutzfeldt, O., Struck, G.: Neurophysiologie und Morphologie der chronisch isolierten Cortexinsel der Katze: Hirnpotentiale und Neuronentätigkeit einer isolierten Nervenzellpopulation ohne afferente Fasern. Arch. Psychiat. Nervenkr.203, 708–731 (1962)CrossRefPubMedGoogle Scholar
  11. 11.
    Creutzfeldt, O., Watanabe, S., Lux, H. D.: Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroenceph. clin. Neurophysiol.20, 1–18 (1966)CrossRefPubMedGoogle Scholar
  12. 12.
    Curtis, D. R., Ryall, R. W.: The synaptic excitation of Renshaw cells. Exp. Brain Res.2, 81–96 (1966)PubMedGoogle Scholar
  13. 13.
    Demetrescu, M.: Cell firing related to active inhibition in visual cortex of cats. Electroenceph. clin. Neurophysiol.27, 709 (1969)PubMedGoogle Scholar
  14. 14.
    Dreifuss, J. J., Kelly, J. S., Krnjević, K.: Cortical inhibition and gammaaminobutyric acid. Exp. Brain Res.9, 137–154 (1969)CrossRefPubMedGoogle Scholar
  15. 15.
    Eccles, J. C.: The physiology of synapses. Berlin-Heidelberg-New York: Springer 1964Google Scholar
  16. 16.
    Eccles, J. C., Fatt, P., Koketsu, K.: Cholinergic and inhibitory synapses in a pathway from motoraxon collaterals to motoneurones. J. Physiol. (Lond.)126, 524–562 (1954)Google Scholar
  17. 17.
    Eccles, J. C.: The inhibitory pathways of the central nervous system. Vol. 9: The Sherrington lectures. Liverpool: University Press 1969Google Scholar
  18. 18.
    Eccles, J. C., Ecoles, R. M., Iggo, A., Lundberg, A.: Electrophysiological investigations on Renshaw cells. J. Physiol. (Lond.)159, 461–478 (1961)Google Scholar
  19. 19.
    Eccles, J. C., Ito, M., Szentágothai, J.: The cerebellum as a neuronal machine. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  20. 20.
    Frank, K., Fuortes, M. G. F.: Stimulation of spinal motoneurons with intracellular electrodes. J. Physiol. (Lond.)134, 451–470 (1956)Google Scholar
  21. 21.
    Glötzner, F., Grüsser, O.-J.: Membranpotential und Entladungsfolgen cortioaler Zellen: EEG und corticales DC-Potential bei generalisierten Krampfanfällen. Arch. Psychiat. Nervenkr.210, 313–339 (1968)CrossRefPubMedGoogle Scholar
  22. 22.
    Holubář, J., Hanke, B., Malík, V.: Intracellular recording from cortical pyramids and small interneurons as identified by subsequent staining with the recording microelectrode. Exp. Neurol.19, 257–264 (1967)CrossRefPubMedGoogle Scholar
  23. 23.
    Hull, C. D., Buchwald, N. A., Vieth, J.: Cortical intracellular analyses of responses to inhibitory and disinhibitory stimuli. Brain Res.6, 12–21 (1967)CrossRefPubMedGoogle Scholar
  24. 24.
    Humphrey, D. R.: Re-analysis of the antidromic cortex response: II. On the contribution of cells discharge and PSPs to the evoked potentials. Electroenceph. clin. Neurophysiol.25, 421–442 (1968)CrossRefPubMedGoogle Scholar
  25. 25.
    Ito, M., Kawai, N., Udo, M., Sato, N.: Cerebellar-evoked disinhibition in dorsal Deiter's neurons. Exp. Brain Res.6, 247–264 (1968)CrossRefPubMedGoogle Scholar
  26. 26.
    Jasper, H., Stefanis, C.: Intracellular oscillatory rhythms in pyramidal tract neurones in the cat. Electroenceph. clin. Neurophysiol.18, 541–553 (1965)CrossRefPubMedGoogle Scholar
  27. 27.
    Kameda, K., Nagel, R., Brooks, V. B.: Some quantitative aspects of pyramidal collateral inhibition. J. Neurophysiol.32, 540–553 (1969)PubMedGoogle Scholar
  28. 28.
    Kandel, E. R., Spencer, W. A.: Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing. J. Neurophysiol.24, 243–254 (1961)PubMedGoogle Scholar
  29. 29.
    Kandel, E. R., Spencer, W. A., Brinley, F. J.: Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization. J. Neurophysiol.24, 225–242 (1961)PubMedGoogle Scholar
  30. 30.
    Kehoe, J.: Ionic mechanisms of a two-component cholinergic inhibition in Aplysia neurones. J. Physiol. (Lond.)225, 85–114 (1972)Google Scholar
  31. 31.
    Klee, M. R., Lux, H. D.: Intracelluläre Untersuchungen über den Einfluß hemmender Potentiale im motorischen Cortex. 2. Die Wirkung elektrischer Reizung des Nucleus caudatus. Arch. Psychiat. Nervenkr.203, 667–689 (1962)CrossRefPubMedGoogle Scholar
  32. 32.
    Klee, M. R., Offenloch, K.: Postsynaptic potentials and spike patterns during augmenting responses in cat's motor cortex. Science143, 488–489 (1964)PubMedGoogle Scholar
  33. 33.
    Koike, H., Okada, Y., Oshima, T., Takahashi, K.: Accomodative behavior of cat pyramidal tract cells investigated with intracellular injection of currents. Exp. Brain Res.5, 173–188 (1968)PubMedGoogle Scholar
  34. 34.
    Krnjević, K., Schwartz, S.: The action of gamma-aminobutyric acid on cortical neurones. Exp. Brain. Res.3, 320–336 (1967)PubMedGoogle Scholar
  35. 35.
    Krnjević, K., Randić, M., Straughan, D. W.: An inhibitory process in the cerebral cortex. J. Physiol. (Lond.)184, 16–48 (1966)Google Scholar
  36. 36.
    Krnjević, K., Randić, M., Straughan, D. W.: Nature of a cortical inhibitory process. J. Physiol. (Lond.)184, 49–77 (1966)Google Scholar
  37. 37.
    Kubota, M., Sakata, H., Takahashi, K., Uno, M.: Location of recurrent inhibitory synapse on cat pyramidal tract cell. Proc. Jap. Acad.41, 195–197 (1965)Google Scholar
  38. 38.
    Landau, W. M., Bishop, G. H., Clare, M. H.: Site of excitation in stimulation of the motor cortex. J. Neurophysiol.28, 1206–1222 (1965)PubMedGoogle Scholar
  39. 39.
    Leblanc, F. E., Cordeau, J. P.: Modulation of pyramidal tract cell activity by ventrolateral thalamic regions: Its possible role in tremorgenic mechanisms. Brain Res.14, 255–270 (1969)CrossRefPubMedGoogle Scholar
  40. 40.
    Lebovik, R., Dichter, M., Spencer, W. A.: Recurrent excitation in hippocampus. Fed. Proc.28, 455 (1969)Google Scholar
  41. 41.
    Li, C.-L.: The inhibitory effect of stimulation of a thalamic nucleus on neuronal activity in the motor cortex. J. Physiol. (Lond.)144, 40–53 (1956)Google Scholar
  42. 42.
    Li, C. -L.: Activity of interneurons in the motor cortex. In: Reticular Formation of the Brain. H. H. Jasper (ed.), pp. 459–472. Boston: Little, Brown & Co. 1958Google Scholar
  43. 43.
    Li, C.-L.: Cortical intracellular synaptic potentials amd direct cortical stimula-tion. J. cell. comp. Physiol.60, 1–16 (1962)CrossRefPubMedGoogle Scholar
  44. 44.
    Lux, H. D., Klee, M. R.: Intracelluläre Untersuchungen über den Einfluß hemmender Potentiale im motorischen Cortex. 1. Wirkung elektrischer Reizung unspezifischer Thalamuskerne. Arch. Psychiat. Nervenkr.203, 648–666 (1962)CrossRefPubMedGoogle Scholar
  45. 45.
    Marin-Padilla, M.: Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: A Golgi study. Brain Res.14, 633–646 (1969)CrossRefPubMedGoogle Scholar
  46. 46.
    McIlwain, J. T., Creutzfeldt, O.: Microelectrode study of synaptic excitation and inhibition in the lateral geniculate nucleus of the cat. J. Neurophysiol.30, 1–21 (1967)Google Scholar
  47. 47.
    Nacimiento, A. C., Lux, H. D., Creutzfeldt, O. D.: Postsynaptische Potentiale von Nervenzellen des motorischen Cortex nach elektrischer Reizung spezifischer und unspezifischer Thalamuskerne. Pflügers Arch. ges. Physiol.281, 152–169 (1964)CrossRefGoogle Scholar
  48. 48.
    Patton, H. D., Amassian, V. E.: Single-and multiple-unit analysis of cortical stage of pyramidal tract activation J. Neurophysiol.17, 345–363 (1954)PubMedGoogle Scholar
  49. 49.
    Phillips, C. G.: Intracellular records from Betz cells in the cat. Quart. J. exp. Physiol.41, 58–69 (1956)PubMedGoogle Scholar
  50. 50.
    Phillips, C. G.: Actions of antidromic pyramidal volleys on single Betz cells in the cat. Quart. J. exp. Physiol.44, 1–25 (1959)PubMedGoogle Scholar
  51. 51.
    Phillis, J. W.: The Pharmacology of Synapses. London-New York-Paris-Braunschweig: Pergamon Press 1970Google Scholar
  52. 52.
    Pollen, D. A., Lux, H. D.: Conductance changes during inhibitory postsynaptic potentials in normal and strychninized cortical neurones. J. Neurophysiol.29, 369–381 (1966)PubMedGoogle Scholar
  53. 53.
    Purpura, D. P., Shofer, R. J.: Cortical intracellular potentials during augmenting and recruiting responses. I. Effects of injected hyperpolarizing currents on evoked membrane potential changes. J. Neurophysiol.27, 117–132 (1964)PubMedGoogle Scholar
  54. 54.
    Renshaw, B.: Central effects of centripetal impulses in axons of spinal ventral roots. J. Neurophysiol.9, 191–204 (1946)Google Scholar
  55. 55.
    Schlag, J.: Reactions and interactions to stimulation of the motor cortex of the cat. J. Neurophysiol.29, 44–71 (1966)PubMedGoogle Scholar
  56. 56.
    Spehlmann, R., Creutzfeldt, O. D., Jung, R.: Neuronale Hemmung im motorischen Cortex nach elektrischer Reizung des Caudatum. Arch. Psychiat. Nervenkr.201, 332–354 (1960)CrossRefGoogle Scholar
  57. 57.
    Stefanis, C., Jasper, H.: Intracellular microelectrode studies of antidromic responses in cortical pyramidal tract neurons. J. Neurophysiol.27, 828–854 (1964)PubMedGoogle Scholar
  58. 58.
    Stefanis, C., Jasper, H.: Recurrent collateral inhibition in pyramidal tract neurons. J. Neurophysiol.27, 855–877 (1964)PubMedCrossRefGoogle Scholar
  59. 59.
    Suzuki, H., Tukahara, Y.: Recurrent inhibition of the Betz cell. Jap. J. Physiol.13, 386–398 (1963)Google Scholar
  60. 60.
    Szentágothai, J.: The synapses of short local neurons in the cerebral cortex. Symp. Biol. hung.5, 251–276 (1965)Google Scholar
  61. 61.
    Takahashi, K., Kubota, K., Uno, M.: Recurrent facilitation in cat pyramidal tract neurons. J. Neurophysiol.30, 22–34 (1967)Google Scholar
  62. 62.
    Toyama, K., Tsukahara, N., Uno, M.: Nature of the cerebellar influences upon the red nucleus neurons. Exp. Brain Res.4, 292–309 (1968)CrossRefPubMedGoogle Scholar
  63. 63.
    Vieth, J. B., Kneise, U.: Depression und Potentiation in corticalen Zellen. Pflügers Arch.307, 126 (1969)Google Scholar
  64. 64.
    Vieth, J. B., Kneise, U., Komposch, K.: Cortical intracellular responses to interacting stimuli. Electroenceph. clin. Neurophysiol.27, 680–681 (1969)Google Scholar
  65. 65.
    Wilson, V. J., Burgess, P. R.: Disinhibition in the cat spinal cord. J. Neurophysiol.25, 392–404 (1962)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Jürgen Vieth
    • 1
  • Ullrich Kneise
    • 1
  • Johanna Käferlein
    • 1
  1. 1.Abteilung für experimentelle Neuropsychiatrie in der Universitäts-Nervenklinik mit PoliklinikErlangen

Personalised recommendations