Advertisement

Biochemical Genetics

, Volume 29, Issue 9–10, pp 477–499 | Cite as

The equine major plasma serpin multigene family: Partial characterization including sequence of the reactive-site regions

  • Scott D. Patterson
  • Kevin Bell
  • Denis C. Shaw
Article

Abstract

The equine Pi system, which is highly polymorphic and was considered to be controlled by a single locus, has been shown to be controlled by four loci (namedSpi 1–4). This system is the equine equivalent of the major human plasma serpin (serine protease inhibitor), human α1PI. Twenty-two haplotypes of the equine Pi system have been characterized by two-dimensional electrophoresis, resulting in the assignment of pI,M r, and bovine trypsin and chymotrypsin inhibition characteristics to 109 proteins. These proteins have been analyzed further to determine their relatedness to each other as well as to human α1PI using immunochemical, structural, and functional criteria. The amino acid sequences of the N termini and reactive-site regions have been determined on proteins from each of the four equineSpi loci. This allowed the designation of the proteins from theSpi 1 locus as being METserpins and the functional equivalents of human α1PI. TheSpi 4 proteins are ARGserpins, and by alignment theSpi 2 proteins are ILEserpins, the first so far described. The P1 residue for theSpi 3 proteins was unable to be determined. The limited peptide and immunopeptide mapping revealed that proteins from all four loci were closely related, but within the four there were two pairs (Spi 1 and2 andSpi 3 and4) which were more related. All were probably derived from the same gene that gave rise to human α1PI.

Key words

serpin Equus caballus two-dimensional electrophoresis protein blotting pulsed liquid phase sequencing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beatty, K., Bieth, J. and Travis, J. (1980). Kinetics of association of serine proteases with native and oxidized α1-proteinase inhibitor and α1-antichymotrypsin.J. Biol. Chem. 2553931.PubMedGoogle Scholar
  2. Bell, K., Patterson, S., and Pollitt, C. C. (1984). The plasma protease inhibitor system (Pi) of Standardbred horses.Anim. Blood Grps. Biochem. Genet. 15191.Google Scholar
  3. Board, P. G., Suzuki, T., and Shaw, D. C. (1988). Human muscle glutathioneS-transferase (GST-4) shows close homology to human liver GST-1.Biochim. Biophys. Acta 953214.PubMedGoogle Scholar
  4. Borriello, F., and Krauter, K. S. (1990). Reactive site polymorphism in the murine protease inhibitor gene family is delineated using a modification of the PCR reaction (PCR + 1).Nucleic Acids Res. 185481.PubMedGoogle Scholar
  5. Braend, M. (1970). Genetics of horse acidic prealbumins.Genetics 65495.PubMedGoogle Scholar
  6. Brennan, S. O., Borg, J.-Y., George, P. M., Soria, J., Caen, J., and Carrell, R. W. (1988). New carbohydrate site in mutant antithrombin (7 Ile → Asn) with decreased heparin affinity.FEBS Lett. 237118.CrossRefPubMedGoogle Scholar
  7. Carrell, R. (1984). Therapy by instant evolution.Nature 31214.CrossRefPubMedGoogle Scholar
  8. Carrell, R. W., and Boswell, D. R. (1986). Serpins: The superfamily of plasma serine proteinase inhibitors. In Barrett, A. J., and Salvesen, G. (eds.),Proteinase Inhibitors Elsevier Science, Amsterdam, pp. 403–420.Google Scholar
  9. Carrell, R. W., and Owen, M. C. (1985). Plakalbumin, α1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis.Nature 317730.CrossRefPubMedGoogle Scholar
  10. Carrell, R., and Travis, J. (1985). α1-Antitrypsin and the serpins: Variation and countervariation.Trends Biochem. Sci. 1020.CrossRefGoogle Scholar
  11. Carrell, R. W., Jeppsson, J.-O, Laurell, C.-B., Brennan, S. O., Owen, M. C., Vaughan, L., and Boswell, D. R. (1982). Structure and variation of human α1-antitrypsin.Nature 298329.CrossRefPubMedGoogle Scholar
  12. Carrell, R. W., Pemberton, P. A., and Boswell, D. R. (1987). The serpins: Evolution and adaption in a family of protease inhibitors.Cold Spring Harbor Symp. Quant. Biol. 52527.PubMedGoogle Scholar
  13. Chandra, T., Stackhouse, R., Kidd, V. J., Robson, K. J. H., and Woo, S. L. C. (1983). Sequence homology between human α1-antichymotrypsin, α1-antitrypsin, and antithrombin III.Biochemistry 225055.CrossRefPubMedGoogle Scholar
  14. Chao, S., Chai, K. X., Chao, L., and Chao, J. (1990). Molecular cloning and primary structure of rat α1-antitrypsin.Biochemistry 29323.CrossRefPubMedGoogle Scholar
  15. Diven, W. F., Vietmeier, B., Hempel, J., and Chambers, J. (1990). Purification andN-terminal characterization ofChinchilla villidera α1-antitrypsin.Comp. Biochem. Physiol. 95B39.Google Scholar
  16. Ek, N., and Braend, M. (1980). Quantitative comparisons of acidic prealbumin (Pr) phenotypes in horses.Acta Vet. Scand. 21380.PubMedGoogle Scholar
  17. Hill, R. E., and Hastie, N. D. (1987). Accelerated evolution in the reactive centre regions of serine protease inhibitors.Nature 32696.CrossRefPubMedGoogle Scholar
  18. Hill, R. E., Shaw, P. H., Barth, R. K., and Hastie, N. B. (1985). A genetic locus closely linked to a protease inhibitor gene complex controls the level of multiple RNA transcripts.Mol. Cell. Biol. 52114.PubMedGoogle Scholar
  19. Hofker, M. H., Nelen, M., Klasen, E. C., Nukiwa, T., Curiel, D., Crystal, R. G., and Frants, R. R. (1988). Cloning and characterization of an α1-antitrypsin like gene 12 kb downstream of the genuine α1-antitrypsin gene.Biochem. Biophys. Res. Commun. 155634.CrossRefPubMedGoogle Scholar
  20. Holmes, W. E., Lijnen, H. R., and Collen, D. (1987). Characterization of recombinant human α2-antiplasmin and of mutants obtained by site directed mutagenesis of the reactive site.Biochemistry 265133.CrossRefPubMedGoogle Scholar
  21. Jallat, S., Carvallo, D., Tessier, L. H., Roecklin, D., Roitsch, C., Ogushi, F., Crystal, R. G., and Courtney, M. (1986). Altered specificities of genetically engineered α1 antitrypsin variants.Protein Eng. 129.PubMedGoogle Scholar
  22. Jeppsson, J.-O., Laurell, C.-B., and Fagerhol, M. (1978). Properties of isolated human α1-antitrypsins of Pi types M, S and Z.Eur. J. Biochem. 83143.CrossRefPubMedGoogle Scholar
  23. Juneja, R. K., Gahne, B., and Sandberg, K. (1979). Genetic polymorphism and close linkage of two α1-protease inhibitors in horse serum.Anim. Blood Grps. Biochem. Genet. 10235–251.Google Scholar
  24. Kelsey, G. D., Parker, M., and Povey, S. (1988). The human alpha-1-antitrypsin-related sequence gene: Isolation and investigation of its expression.Ann. Hum. Genet. 52151.PubMedGoogle Scholar
  25. Koide, T., Foster, D., and Odani, S. (1986). The heparin-binding site(s) of histidine rich glycoprotein a suggested by sequence homology with antithrombin III.FEBS Lett. 194242.CrossRefPubMedGoogle Scholar
  26. Krauter, K. S., Citron, B. A., Hsu, M. T., Powell, D., and Darnell, J. E., Jr. (1986). Isolation and characterization of the α1-antitrypsin gene of mice.DNA 529.PubMedCrossRefGoogle Scholar
  27. Kress, L. F. (1986). Inactivation of human plasma serine proteinase inhibitors (serpins) by limited proteolysis of the reactive site loop with snake venom and bacterial metalloproteinases.J. Cell. Biochem. 3251.CrossRefPubMedGoogle Scholar
  28. Kurachi, K., Chandra, T., Friezner Degen, S. J., White, T. T., Marchioro, T. L., Woo, S. L. C., and Davie, E. W. (1981). Cloning and sequence of cDNA coding for α1-antitrypsin.Proc. Natl Acad. Sci. USA 786826.PubMedGoogle Scholar
  29. Laegreid, W. W., Breeze, R. G., and Counts, D. F. (1982). Isolation and some properties of equine α1-antitrypsin.Int. J. Biochem. 14327.CrossRefPubMedGoogle Scholar
  30. Laskowski, M. (1980). An algorithmic approach to sequence → reactivity of proteins, specificity of protein inhibitors of serine proteinases.Biochem. Pharmacol. 292089.CrossRefPubMedGoogle Scholar
  31. Laskowski, M., Jr., Kato, I., Kohr, W. J., Park, S. J., Tashiro, M., and Whatley, H. E. (1987). Positive Darwinian selection in evolution of protein inhibitors of serine proteinases.Cold Spring Harbor Symp. Quant. Biol. 52545.PubMedGoogle Scholar
  32. Lindmark, B., Lilja, H., Alm, R., and Eriksson, S. (1989). The microheterogeneity of desialylated α1-antichymotrypsin: The occurrence of two amino-terminal isoforms, one lacking a his-pro dipeptide.Biochim. Biophys. Acta 99790.PubMedGoogle Scholar
  33. Loebermann, H., Tokuoka, R., Deisenhofer, J., and Huber, R. (1984). Human α1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function.J. Mol. Biol. 177531.CrossRefPubMedGoogle Scholar
  34. Nukiwa, T., Brantly, M. L., Ogushi, F., Fells, G. A., and Crystal, R. G. (1988). Characterization of the gene and protein of the common α1-antitrypsin normal M2 allele.Am. J. Hum. Genet. 43322.PubMedGoogle Scholar
  35. Okayama, H., Holmes, M. D., Brantly, M. L., and Crystal, R. G. (1989). Characterization of the coding sequence of the normal M4 α1-antitrypsin gene.Biochem. Biophys. Res. Commun. 1621560.CrossRefPubMedGoogle Scholar
  36. Papamokos, E., Weber, F., Bode, W., Huber, R., Empie, M. W., Kato, I., and Laskowski, M. (1982). Crystallographic refinement of Japanese quail ovomucoid, a Kazal-type inhibitor, and model building studies of complexes with serine proteases.J. Mol. Biol. 158515.CrossRefPubMedGoogle Scholar
  37. Patterson, S. D., and Bell, K. (1986). The equine protease inhibitory system (Pi): Abnormal expressions of PiF, PiL, and PiS1.Biochem. Genet. 24529.CrossRefPubMedGoogle Scholar
  38. Patterson, S. D., and Bell, K. (1987a). ISO-DALT characterization of 12 “new” equine plasma protease inhibitor (Pi) alleles.Anim. Genet. 18167.PubMedCrossRefGoogle Scholar
  39. Patterson, S. D., and Bell, K. (1987b). Frequencies of plasma protease inhibitor alleles in Australian horse breeds and the recognition of two new alleles.Anim. Genet. 18181.PubMedCrossRefGoogle Scholar
  40. Patterson, S. D., and Bell, K. (1989). Application of an affinity electrophoretic andin situ oxidation method to the study of the equine protease inhibitory proteins.Electrophoresis 1040.CrossRefPubMedGoogle Scholar
  41. Patterson, S. D., and Bell, K. (1990). The carbohydrate side chains of the major plasma serpins of horse and wallaby: Analyses of enzymatic and chemically treated (including “Smith degradation”) protein blots by lectin binding.Biochem. Int. 20429.PubMedGoogle Scholar
  42. Patterson, S. D., Bell, K., and Poole, W. E. (1987). Tammar wallaby plasma protease inhibitory (Pi) proteins.Aust. J. Biol. Sci. 40 355.PubMedGoogle Scholar
  43. Patterson, S. D., Bell, K., and Shaw, D. C. (1989). Structural characterization including reactive site region of the major plasma serpins of horse and wallaby.J. Cell. Biochem. Suppl. 13C101.Google Scholar
  44. Patterson, S. D., Bell, K., and Manton, V. J. A. (1990). Equus przewalskii plasma protease inhibitor (Pi) system.Anim. Genet. 21129.PubMedGoogle Scholar
  45. Patterson, S. D., Bell, K., and Shaw, D. C. (1991a). The Tammar wallaby major plasma serpin: Partial characterization including the sequence of the reactive site region.Comp. Biochem. Physiol. 98C359.CrossRefGoogle Scholar
  46. Patterson, S. D., Bell, K., and Shaw, D. C. (1991b). Donkey and horse α1B-glycoprotein: Partial characterization and new alleles.Comp. Biochem. Physiol. 98B523.Google Scholar
  47. Pellegrini, A., and von Fellenberg, R. (1980). Fractionation and partial characterization of α1-protease isoinhibitors of horse.Biochim. Biophys. Acta 6163511.Google Scholar
  48. Pellegrini, A., Zweifel, H. R., and von Fellenberg, R. (1985). Horse α1 protease inhibitors: Relationship between the slow (s) and fast (f) isoforms.Int. J. Biochem. 17463.CrossRefPubMedGoogle Scholar
  49. Pellegrini, A., Hageli, G., and von Fellenberg, R. (1986). Resistance of horse α1-proteinase inhibitor to perchloric acid denaturation and a simplified purification procedure resulting therefrom.Biochim. Biophys. Acta 874144.PubMedGoogle Scholar
  50. Pemberton, P. A., Harrison, R. A., Lachmann, P. J., and Carrell, R. W. (1989). The structural basis for neutrophil inactivation of C1 inhibitor.Biochem. J. 258193.PubMedGoogle Scholar
  51. Pollitt, C. C., and Bell, K. (1980). Protease inhibitor system in horses: Classification and detection of a new allele.Anim. Blood Grps. Biochem. Genet. 11235.Google Scholar
  52. Pollitt, C. C., and Bell, K. (1983a). Characterization of the α1-protease inhibitory system in Thoroughbred horse plasma by horizontal two-dimensional (ISO-DALT) electrophoresis. 1. Protein staining.Anim. Blood Grps. Biochem. Genet. 1483.Google Scholar
  53. Pollitt, C. C., and Bell, K. (1983b). Characterization of the α1-protease inhibitor system in Thoroughbred horse plasma by horizontal two-dimensional (ISO-DALT) electrophoresis. 2. Protease inhibition.Anim. Blood Grps. Biochem. Genet. 14107.Google Scholar
  54. Potempa, J., Watorek, W., and Travis, J. (1986). The inactivation of human plasma α1-proteinase inhibitor by proteinases fromStaphylococcus aureus.J. Biol. Chem. 26114330.PubMedGoogle Scholar
  55. Potempa, J., Wunderlich, J. K., and Travis, J. (1991). Comparative properties of three functionally different but structurally related serpin variants from horse plasma.Biochem. J. 274465.PubMedGoogle Scholar
  56. Putt, W., and Whitehouse, D. B. (1983). Genetics of four plasma protein loci in Equus przewalskii: New alleles at the prealbumin, postalbumin and transferrin loci.Anim. Blood Grps. Biochem. Genet. 147.Google Scholar
  57. Saito, A., and Sinohara, H. (1988). Differential interactions of rabbit plasma α1-antiproteinases S and F with porcine trypsin.J. Biochem. 103247.PubMedGoogle Scholar
  58. Saito, A., and Sinohara, H. (1990). Amino acid sequence at the reactive site of rabbit α1-antiproteases.J. Biochem. 10880.PubMedGoogle Scholar
  59. Scott, A. M. (1977). Prealbumin: The single most useful system in Thoroughbred horse blood typing.Anim. Blood Grps. Biochem. Genet. 8 (Suppl. 1):19.Google Scholar
  60. Stein, P. E., Leslie, A. G. W., Finch, J. T., Turnell, W. G., McLaughlin, P. J., and Carrell, R. W. (1990). Crystal structure of ovalbumin as a model for the reactive centre for serpins.Nature (London) 34799.CrossRefPubMedGoogle Scholar
  61. Stephens, A. W., Siddiqui, A., and Hirs, C. H. W. (1988). Site-directed mutagenesis of the reactive centre (serine 394) of antithrombin III.J. Biol. Chem. 26315849.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Scott D. Patterson
    • 1
  • Kevin Bell
    • 1
  • Denis C. Shaw
    • 2
  1. 1.Department of Physiology and PharmacologyThe University of QueenslandBrisbaneAustralia
  2. 2.Protein Biochemistry Group, John Curtin School of Medical ResearchAustralian National UniversityCanberraAustralia

Personalised recommendations