Acta Mathematica

, Volume 156, Issue 1, pp 203–251 | Cite as

Primes in arithmetic progressions to large moduli

  • E. Bombieri
  • J. B. Friedlander
  • H. Iwaniec
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bombieri, E., On the large sieve.Mathematika, 12 (1965), 201–225.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    Deshouillers J.-M. &Ivaniec, H., Kloosterman sums and Fourier coefficients of cusp forms.Invent. Math., 70 (1982), 219–288.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    Elliott, P. D. T. A. &Halberstam, H., A conjecture in prime number theory.Symp. Math., 4 (INDAM Rome, 1968–69), 59–72.Google Scholar
  4. [4]
    Fouvry, E., Répartition des suites dans les progressions arithmétiques.Acta Arith. 41 (1982), 359–382.MATHMathSciNetGoogle Scholar
  5. [5]
    —, Autour du théorème de Bombieri-Vinogradov.Acta Math., 152 (1984), 219–244.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    Fouvry, E. &Iwaniec, H., On a theorem of Bombieri-Vinogradov type.Mathematika, 27 (1980), 135–172.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    — Primes in arithmetic progressions.Acta Arith., 42 (1983), 197–218.MATHMathSciNetGoogle Scholar
  8. [8]
    Friedlander, J. &Iwaniec, H., On Bombieri's asymptotic sieve.Ann. Scuola Norm. Sup. Pisa Cl. Sci (4), 5 (1978), 719–756.MATHMathSciNetGoogle Scholar
  9. [9]
    — Incomplete Kloosterman sums and a divisor problem.Ann. Math., 121 (1985), 319–350.CrossRefMATHGoogle Scholar
  10. [10]
    Friedlander, J. The divisor problem for arithmetic progressions. To appear inActa Arith.Google Scholar
  11. [11]
    Gallagher, P. X., Bombieri's mean value theorem.Mathematika, 14 (1967), 14–20.CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    Heath-Brown, D. R., Prime numbers in short intervals and a generalized Vaughan identity.Canad. J. Math., 34 (1982), 1365–1377.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    Hooley, C., On the Barban-Davenport-Halberstam Theorem III.J. London Math. Soc. (2), 10 (1975), 249–256.CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    Iwaniec, H., The half dimensional sieve.Acta Arith., 29 (1976), 67–95.MathSciNetGoogle Scholar
  15. [15]
    —, A new form of the error term in the linear sieve.Acta Arith., 37 (1980), 307–320.MATHMathSciNetGoogle Scholar
  16. [16]
    Linnik, Ju. V., All large numbers are sums of a prime and two squares (a problem of Hardy and Littlewood), II.Mat. Sb. 53 (1961), 3–38;Amer. Math. Soc. Transl., 37 (1964), 197–240.MathSciNetGoogle Scholar
  17. [17]
    —,The dispersion method in binary additive problems. Amer. Math. Soc., Providence, 1963.MATHGoogle Scholar
  18. [18]
    Motohashi, Y., An induction principle for the generalization of Bombieri's Prime Number Theorem.Proc. Japan Acad., 52 (1976), 273–275.CrossRefMATHMathSciNetGoogle Scholar
  19. [19]
    Shiu, P., A Brun-Titchmarsh theorem for multiplicative functions.J. Reine Angew. Math., 313 (1980), 161–170.MATHMathSciNetGoogle Scholar
  20. [20]
    Vaughan, R. C., An elementary method in prime number theory.Acta Arith., 37 (1980), 111–115.MATHMathSciNetGoogle Scholar
  21. [21]
    Vinogradov, A. I., On the density hypothesis for DirichletL-functions.Izv. Akad. Nauk SSSR Ser. Math., 29 (1965), 903–934; correctionibid. Izv. Akad. Nauk SSSR Ser. Math., 30 (1966), 719–720.MATHGoogle Scholar
  22. [22]
    Wolke, D., Über mittlere Verteilung der Werte zahlentheoretischer Funktionen auf Restklassen I.Math. Ann., 202 (1973), 1–25; IIibid. Math. Ann., 204 (1973), 145–153.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1986

Authors and Affiliations

  • E. Bombieri
    • 1
  • J. B. Friedlander
    • 1
  • H. Iwaniec
    • 1
  1. 1.Institute for Advanced StudyPrincetonUSA

Personalised recommendations