Journal of Mathematical Sciences

, Volume 84, Issue 3, pp 1197–1207 | Cite as

The asymptotics of multidimensional infinitely divisible distributions

  • A. L. Yakymiv
Article

Abstract

The present article deals with the asymptotics at infinity of multidimensional infinitely divisible distributions with the support in a cone.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Sgibnev, “The asymptotics of infinitely divisible distributions inR nSib. Mat. Zh.,31, No. 1, 135–140 (1990).MATHMathSciNetGoogle Scholar
  2. 2.
    E. Omey, “Infinite divisibility and random sums of random vectors,”Yokohama Math. J.,33, No. 1–2, 39–48 (1985).MATHMathSciNetGoogle Scholar
  3. 3.
    V. S. Vladimirov, “A multivariate generalization of the Hardy-Littlewood Tauberian theorem,”Izv. Akad. Nauk SSSR, Ser. Mat.,40, 1084–1101 (1976).MATHMathSciNetGoogle Scholar
  4. 4.
    V. S. Vladimirov, Yu. N. Drozhzhinov, and B. I. Zavyalov,Multivariate Tauberian Theorems for Generalized Functions [in Russian], Nauka, Moscow (1986).Google Scholar
  5. 5.
    A. L. Yakymiv, “The asymptotics of the probability of continuation of the critical Bellman-Harris branching processes,” in:Proceedings of the Steklov Mathematical Institute of the Academy of Sciences of USSR,177 Moscow (1986), pp. 177–205.Google Scholar
  6. 6.
    A. L. Yakymiv, “Multivariate Tauberian theorems and their applications to the Bellman-Harris branching processes,”Mat. Sb.,115(157), No. 3 463–477 (1981).MATHMathSciNetGoogle Scholar
  7. 7.
    V. M. Zolotarev, “On the asymptotic behavior of a class of infinitely divisible distribution laws,”Teor. Veroyatn. Primen.,6, No. 3, 330–334 (1961).MATHMathSciNetGoogle Scholar
  8. 8.
    A. L. Yakymiv, “The asymptotic behavior of a class of infinitely divisible distribution laws,”Teor. Veroyatn. Primen.,32, No. 4, 691–702 (1987).MATHMathSciNetGoogle Scholar
  9. 9.
    A. L. Yakymiv, “The asymptotics of the density of an infinitely divisible distribution at infinity,”J. Math. Sci.,69, No. 4, 1248–1256 (1994).CrossRefMathSciNetGoogle Scholar
  10. 10.
    I. S. Gradshtein and I. S. Ryzhik,Tables of Integrals, Series and Products, Academic Press, New York (1965).Google Scholar
  11. 11.
    V. M. Kruglov and S. N. Antonov, “On the asymptotic behavior of infinitely divisible distributions in a Banach space,”Teor. Veroyatn. Primen.,27, No. 4, 625–642 (1982).MathSciNetGoogle Scholar
  12. 12.
    V. M. Kruglov and S. N. Antonov, “Once more on the asymptotic behavior of infinitely divisible distributions in a Banach space,”Teor. Veroyatn. Primen.,29, No. 4, 735–742 (1984).MathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • A. L. Yakymiv
    • 1
  1. 1.Steklov Mathematical InstituteMoscowRussia

Personalised recommendations