Advertisement

Journal of Materials Science

, Volume 19, Issue 11, pp 3626–3639 | Cite as

Oxide morphology and adhesive bonding on titanium surfaces

  • M. Assefpour-Dezfuly
  • C. Vlachos
  • E. H. Andrews
Papers

Abstract

Titanium metal was subjected to two surface treatments (alkaline peroxide etch and chromic acid anodization) and resulting oxide morphology examined by high-resolution scanning electron microscopy in a Jeol 100-CX STEM. The effects of treatment time in alkaline peroxide upon oxide morphology were followed and parallel mechanical measurements made on the strengths of adhesive bonds between the metal and an epoxy resin. These strengths were measured after a standard environmental exposure, namely 120 h in water at 80° C. As time-of-treatment increases, a micro-porous oxide layer is developed and adhesive strength rises to a maximum. Prolonged treatment with alkaline peroxide produces a drastic fall in adhesive strength accompanied by gross etching of the metal surface without changes in the oxide morphology. The loss of adhesive durability in this case is therefore attributable to surface chemistry effects rather than morphological changes.

Keywords

Titanium Epoxy Environmental Exposure Adhesive Strength Prolonged Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. Brewis (Ed.), “Surface analysis and pretreatment of plastics and metals” (Applied Science, Barking, 1982) Chs. 7 and 8.Google Scholar
  2. 2.
    J. D. Venables, B. M. Ditchek andK. R. Breen, Naval Air Systems Command, Washington D.C., Report AIR-52032-B (1980).Google Scholar
  3. 3.
    J. D. Venables, D. K. McNamara, J. M. Chen andT. S. Sun,Appl. Surf. Sci. 3 (1979) 88.CrossRefGoogle Scholar
  4. 4.
    G. D. Davis, T. S. Sun, J. S. Ahearn andJ. D. Venables,J. Mater. Sci. 17 (1982) 1807.CrossRefGoogle Scholar
  5. 5.
    R. F. Wegman andM. J. Bondnar,SAMPE Quart. 5 (1973) 28.Google Scholar
  6. 6.
    B. M. Ditchek, K. R. Breen, T. S. Sun, J. D. Venables andS. R. Brown, Proceedings 12th National SAMPE Technical Conference, Seattle, Washington, 1980 (Society for the Advancement of Material and Process Engineering, Azusa, CA, 1981) p. 882.Google Scholar
  7. 7.
    J. D. Venables, D. K. McNamara, J. M. Chen, B. M. Ditchek, T. I. Morgenthaler, T. S. Sun andR. L. Hopping,ibid..Google Scholar
  8. 8.
    M. Natan, K. R. Breen andJ. D. Venables, Martin Marietta Laboratories Report MML TR 81-42(c) (1981).Google Scholar
  9. 9.
    C. Vlachos, Ph.D. thesis, University of London (1982).Google Scholar
  10. 10.
    E. H. Andrews andA. Stevenson,J. Adhesion 11 (1980) 17.Google Scholar
  11. 11.
    Idem, J. Mater. Sci. 13 (1978) 1960.CrossRefGoogle Scholar
  12. 12.
    E. H. Andrews,ibid. 9 (1974) 887.CrossRefGoogle Scholar
  13. 13.
    E. H. Andrews, He Pingsheng andC. Vlachos,Proc. Roy. Soc. (Lond.) A 381 (1982) 345.CrossRefGoogle Scholar
  14. 14.
    N. Natan andJ. D. Venables,J. Adhesion 15 (1983) 125.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1984

Authors and Affiliations

  • M. Assefpour-Dezfuly
    • 1
  • C. Vlachos
    • 1
  • E. H. Andrews
    • 1
  1. 1.Department of MaterialsQueen Mary CollegeLondonUK

Personalised recommendations