Journal of Materials Science

, Volume 19, Issue 11, pp 3515–3523 | Cite as

Degradation of Mn-doped BaTiO3 ceramic under a high d.c. electric field

  • J. Rödel
  • G. Tomandl
Papers

Abstract

A manganese-doped BaTiO3 was investigated with regard to the degradation of resistivity under a high d.c. electric field. Degradation was measured as a function of time, composition and temperature, using an electric field of 3 Vμm−1. The activation energy of the process was found to be 1.13 eV. to clarify the mechanismI againstU characteristics andI againstT graphs of new, degraded and relaxed samples were studied. Electron paramagnetic resonance and potential measurements were found to be useful in describing the degradation. Finally, a brief model is put forward to account for the observed phenomena. It is based on an injection of oxygen vacancies from the anode, which is accompanied by a reduction of manganese in the lattice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Goto andS. Kachi,J. Phys. Chem. Sol. 32 (1971) 889.CrossRefGoogle Scholar
  2. 2.
    K. Lehovec andG. A. Shirn,J. Appl. Phys. 33 (1962) 889.CrossRefGoogle Scholar
  3. 3.
    D. A. Payne, Proceedings of the Sixth Annual Reliability Physics Symposium, IEEE, California (New York, 1968) p. 257.Google Scholar
  4. 4.
    J. B. Macchesney, P. K. Gallagher andF. V. Dimarcello,J. Amer. Ceram. Soc. 46 (1963) 197.Google Scholar
  5. 5.
    K. Okazaki andH. Igaraski,Ferroelectrics 27 (1979) 263.Google Scholar
  6. 6.
    W. A. Schulze, L. E. Cross andW. R. Buessem,J. Amer. Ceram. Soc.,63 (1980) 83.Google Scholar
  7. 7.
    W. J. Minford,IEEE Trans. Components, Hybrids, Manuf. Technol.,5 (1982) 297.CrossRefGoogle Scholar
  8. 8.
    R. M. Gruver, W. R. Buessem, C. W. Dickey andJ. W. Anderson,Tech. Rept. AFML-TR-66-164 (1966) 223.Google Scholar
  9. 9.
    V. Ya. Kunin, A. N. Tsikin andN. A. Shturbina,Sov. Phys. Solid State 11 (1968) 598.Google Scholar
  10. 10.
    D. D. Glower andR. C. Heckman,J. Chem. Phys. 41 (1964) 877.CrossRefGoogle Scholar
  11. 11.
    C. Schaffrin,Phys. Status Solidi (a) 35 (1976) 79.Google Scholar
  12. 12.
    R. Wernicke,Philips Res. Rep. 31 (1976) 526.Google Scholar
  13. 13.
    T. Takeda andA. Watanabe,J. Phys. Soc. Jpn. 21 (1966) 267.CrossRefGoogle Scholar
  14. 14.
    H. J. Hagemann, Ph.D. Thesis, RWTH Aachen (1980).Google Scholar
  15. 15.
    T. I. Prokopowicz andA. R. Vaskas, Final Rep., ECOM-90705-F (1969); MTIS AD-864068.Google Scholar
  16. 16.
    L. Benguigui,J. Phys. Chem. Solids 34 (1973) 573.Google Scholar
  17. 17.
    H. J. Hagemann,Ber. Dt. Keram. Ges. 55 (1978) 353.Google Scholar
  18. 18.
    J. B. Desu andE. C. Subbarao, “Advances in Ceramics”, Vol. I, edited by L. M. Levinson (American Ceramic Society, Ohio, 1981) p. 189.Google Scholar
  19. 19.
    H. Ikushima andS. Hayakawa,J. Phys. Soc. Jpn. 19 (1964) 1986.Google Scholar
  20. 20.
    M. Nakahara andT. Murakami,J. Appl. Phys. 45 (1974) 3795.CrossRefGoogle Scholar
  21. 21.
    R. Wernicke, Personal communication.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1984

Authors and Affiliations

  • J. Rödel
    • 1
  • G. Tomandl
    • 1
  1. 1.Erlangen-Nürnberg, Institut für Werkstoff Wissenschaften, Lehrstuhl III, Glas und KeramikFriedrick-Alexander-UniversitätErlangen Martensstrasse 5West Germany

Personalised recommendations