Journal of Low Temperature Physics

, Volume 109, Issue 3–4, pp 527–546 | Cite as

Thermoviscous effects in steady and oscillating flow of superfluid4He: Experiments

  • S. Backhaus
  • K. Schwab
  • A. Loshak
  • S. Pereverzev
  • N. Bruckner
  • J. C. Davis
  • R. E. Packard
Articles

Abstract

The correct interpretation of superfluid flow experiments relies on the knowledge of thermal and viscous effects that can cause deviations from ideal behavior. The previous paper presented a theoretical study of dissipative and reactive(nondissipative) thermoviscous effects in both steady and oscillating flow of an isotropic superfluid through small apertures and channels. Here, a detailed comparison is made between the theory and a wide array of experimental data. First, the calculated resistance to steady superflow is compared with measurements taken in a constant pressure-head flow cell. Second, the resonant frequency and Q of three different helmholtz oscillators are compared with predictions based on the calculated frequency response. The resonant frequency and Q are extracted numerically from the frequency response, and analytical results are given in experimentally important limits. Finally, the measured and calculated frequency response are compared at a temperature where the Helmholtz oscillator differs significantly from a simple harmonic oscillator. This difference is used to explain how the thermal properties of the oscillator affect its response. The quantitative agreement between the theory and experiment provide an excellent check of the previously derived equations. Also, the limiting expressions shown in this paper provide simple analytical expressions for calculating the effects of the various physical phenomena in a particular experimental situation.

Keywords

Frequency Response Resonant Frequency Harmonic Oscillator Detailed Comparison Flow Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Backhaus and E. Yu. Backhaus,J. Low Temp. Phys. 109, 511 (1997).CrossRefADSGoogle Scholar
  2. 2.
    J. Wilks,The Properties of Liquid and Solid Helium, Clarendon Press, Oxford (1967), Section 13.8.Google Scholar
  3. 3.
    J. S. Brooks, B. B. Sabo, P. C. Schubert, and W. Zimmermann, Jr.,Phys. Rev. B 9, 4524 (1979).CrossRefADSGoogle Scholar
  4. 4.
    S. Backhaus and R. E. Packard, Proceedings of LT-21,Czech. J. of Phys. 46(S5), 2743 (1996).ADSGoogle Scholar
  5. 5.
    J. Steinhauer, K. Schwab, Y. Mukharsky, J. C. Davis, and R. E. Packard,J. Low. Temp. Phys. 100, 281 (1995).CrossRefADSGoogle Scholar
  6. 6.
    K. Schwab, J. Steinhauer, J. C. Davis, and R. E. Packard,J. of Microelec. Syst. 5, 180 (1996). The oscillator in this reference has a slightly different flow channel than the one used to take the data for this paper.CrossRefGoogle Scholar
  7. 7.
    A. Amar, Y. Sasaki, R. Lozes, J. C. Davis, and R. E. Packard,J. Vac. Sci. Tech. B 11, 259 (1993).CrossRefGoogle Scholar
  8. 8.
    N. Bruckner, S. Backhaus, and R. E. Packard, Proceedings of LT-21,Czech. J. of Phys. 46(S5), 2741 (1996).ADSGoogle Scholar
  9. 9.
    G. M. Shifflett and G. B. Hess,J. Low Temp. Phys. 98 (5/6), 591 (1995); S. Backhaus, N. Bruckner, A. Loshak, K. Schwab, and R. E. Packard, Proceedings of LT-21,Czech. J. of Phys. 46(S1), 127 (1996).CrossRefADSGoogle Scholar
  10. 10.
    L. J. Challis, K. Dransfeld, and J. Wilks,Proc. Roy. Soc. Lond. A260, 31 (1961).ADSCrossRefGoogle Scholar
  11. 11.
    P. M. Morse and H. Feschbach,Methods of Theoretical Physics, McGraw-Hill, New York (1953), p. 1197.MATHGoogle Scholar
  12. 12.
    R. J. Donnelly, R. A. Riegelmann, and C. F. Barenghi,The Observed Properties of Liquid Helium at the Saturated Vapor Pressure, A Report to the Department of Physics, University of Oregon, Eugene, Oregon, 1992.Google Scholar
  13. 13.
    H. J. Paik,J. Appl. Phys. 47, 1168 (1976).CrossRefADSGoogle Scholar
  14. 14.
    Lake Shore Cryotronics, Inc. Model #: GR200A-50.Google Scholar
  15. 15.
    J. S. Brooks and R. J. Donnelly,J. Phys. and Chem. Ref. Data 6, 51 (1977).ADSCrossRefGoogle Scholar
  16. 16.
    J. S. Brooks, B. B. Sabo, P. C. Schubert, and W. Zimmermann, Jr.,Phys. Rev. B 19, 4524 (1979).CrossRefADSGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • S. Backhaus
    • 1
  • K. Schwab
    • 2
  • A. Loshak
    • 1
  • S. Pereverzev
    • 1
  • N. Bruckner
    • 1
  • J. C. Davis
    • 1
  • R. E. Packard
    • 1
  1. 1.Physics DepartmentUniversity of CaliforniaBerkeleyUSA
  2. 2.Condensed Matter Physics 114-36California Institute of TechnologyPasadenaUSA

Personalised recommendations