Journal of Low Temperature Physics

, Volume 107, Issue 1–2, pp 77–92 | Cite as

Natural ortho-para conversion rate in liquid and gaseous hydrogen

  • Yu. Ya. Milenko
  • R. M. Sibileva
  • M. A. Strzhemechny


We measured natural ortho-para conversion rates within a wide region of hydrogen fluid states: at temperatures 17–32 K in the liquid and at temperatures 40–120 K in the gas for densities up to 0.09 g/cm3. The experimental data for the gas phase are interpreted within the framework of a theory, the basic distinction of which from Wigner’s approach is that we take into account the dependence of the closest distance in a collision of two orthomolecules on their velocity (i.e., temperature). Our theory yields results in good qualitative agreement with experiment in the gas phase. In order to describe the entire bulk of conversion rate data in the hydrogen fluid phases we suggest a convenient interpolation formula, which has reasonable physcial grounds.


Hydrogen Rate Data Magnetic Material Conversion Rate Fluid Phasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Motizuki and T. Nagamiya,J. Phys. Soc. Japan 11, 93 (1956).Google Scholar
  2. 2.
    A. J. Berlinsky and W. N. Hardy,Phys. Rev. B 8, 5013 (1973); A. J. Berlinsky,Phys. Rev. B 12, 1482 (1975).CrossRefADSGoogle Scholar
  3. 3.
    I. F. Silvera,Rev. Mod. Phys. 52, 395 (1980).CrossRefADSGoogle Scholar
  4. 4.
    Physics of Cryocrystals, Yu. A. Freiman, V. G. Manzhelii, M. L. Klein, and A. A. Maradudin (eds.), AIP Press, New York (1996).Google Scholar
  5. 5.
    E. Cremer and M. Polanyi,Zs. Phys. Chem. B 21, 459 (1933).Google Scholar
  6. 6.
    E. Cremer,Zs. Phys. Chem. B 28, 199 (1935);B 39, 445 (1938).Google Scholar
  7. 7.
    R. B. Scott, F. G. Brickwedde, H. C. Urey, and M. H. Wahl,J. Chem. Phys. 2, 454 (1934).CrossRefGoogle Scholar
  8. 8.
    A. H. Larsen, F. E. Simon, and C. A. Swenson,Rev. Sci. Instr. 19, 266 (1948).CrossRefGoogle Scholar
  9. 9.
    Yu. Ya. Milenko and R. M. Sibileva,Ukr. Phys. J. 19, 2008 (1974).Google Scholar
  10. 10.
    E. P. Wigner,Z. Phys. Chem. B 23, 28 (1933).zbMATHGoogle Scholar
  11. 11.
    J. T. Kummer,J. Phys. Chem. 66, 1715 (1962).Google Scholar
  12. 12.
    F. Schmidt,Phys. Rev. B 10, 4480 (1974).CrossRefADSGoogle Scholar
  13. 13.
    Yu. Ya. Milenko and R. M. Sibileva,Fiz. Nizk. Temp. 10, 679 (1984) [Sov. J. Low Temp. Phys. 10, 513 (1984)].Google Scholar
  14. 14.
    L. S. Serdyuk,Zh. Fiz. Khim. 18, 485 (1969).Google Scholar
  15. 15.
    A. Farkas,Orthohydrogen, parahydrogen, and heavy hydrogen, Cambridge Univ. Press (1935).Google Scholar
  16. 16.
    L. S. Serdyuk,Kholod. Tekhnika i Tekhnol. N 7, Tekhnika (1968) (in Russian).Google Scholar
  17. 17.
    Ya. Z. Kazavchinskii and L. S. Serdyuk, inThermal Properties of Substances and Materials, Series Physical Constants and Properties of Substances, N 3, Standarty, Moscow (1971) (in Russian).Google Scholar
  18. 18.
    N. B. Vargaftik,Handbook on Thermal Properties of Gases and Liquids, Moscow (1972) (in Russian).Google Scholar
  19. 19.
    A. F. Andreev,Pisma ZhETF 28, 603 (1978) [JETP Lett. 28, 556 (1978)].Google Scholar
  20. 20.
    A. F. Andreev and Yu. A. Kosevich,Zh. Eksp. Teor. Fiz. 77, 2518 (1979) [Sor. Phys. JETP]50, 1218 (1979)].MathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Yu. Ya. Milenko
    • 1
  • R. M. Sibileva
    • 1
  • M. A. Strzhemechny
    • 2
  1. 1.National Research Center “Physico-Technical Institute”KharkovUkraine
  2. 2.Verkin Institute for Low Temperature Physics and EngineeringKharkovUkraine

Personalised recommendations