On the edema-preventing effect of the calf muscle pump

  • C. Stick
  • H. Grau
  • E. Witzleb


During motionless standing an increased hydrostatic pressure leads to increased transcapillary fluid filtration into the interstitial space of the tissues of the lower extremities. The resulting changes in calf volume were measured using a mercury-in-silastic strain gauge. Following a change in body posture from lying to standing or sitting a two-stage change in calf volume was observed. A fast initial filling of the capacitance vessels was followed by a slow but continuous increase in calf volume during motionless standing and sitting with the legs dependent passively. The mean rates of this slow increase were about 0.17%·min−1 during standing and 0.12%·min−1 during sitting, respectively. During cycle ergometer exercise the plethysmographic recordings were highly influenced by movement artifacts. These artifacts, however, were removed from the recordings by low-pass filtering. As a result the slow volume changes, i.e. changes of the extravascular fluid were selected from the recorded signal. Contrary to the increases during standing and sitting the calf volumes of all 30 subjects decreased during cycle ergometer exercise. The mean decrease during 18 min of cycling (2–20 min) was −1.6% at 50 W work load and −1.9% at 100 W, respectively. This difference was statistically significant (p≤0.01). The factors which may counteract the development of an interstitial edema, even during quiet standing and sitting, are discussed in detail. During cycling, however, three factors are most likely to contribute to the observed reduction in calf volume: (1) The decrease in venous pressure, which in turn reduces the effective filtration pressure. (2) An increased lymph flow, which removes fluid and osmotically active colloid proteins from the interstitial space. (3) An increase in muscle tissue pressure, which counteracts the intravascular pressure during the muscle contraction thus playing an important role as an edema-preventing factor, which has not been considered to date.

Key words

Edema-preventing mechanisms Posture Exercise Interstitial fluid Capillary filtration Lymph flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnoldi CC (1965) Venous pressure in the leg of healthy human subjects at rest and during muscular exercise in the nearly erect position. Acta Chir Scand 130:570–583PubMedGoogle Scholar
  2. Asmussen E, Christensen EH, Nielsen M (1939a) Pulsfrequenz und Körperstellung. Scand Arch Physiol 81:190–203Google Scholar
  3. Asmussen E, Christensen EH, Nielsen M (1939b) Über die Kreislaufinsuffizienz in stehender Stellung bei normalem arteriellen Druck und herabgesetztem Minutenvolumen. Scand Arch Physiol 81:214–224Google Scholar
  4. Atzler E, Herbst R (1923) Die Schwankungen des Fußvolumens und deren Beeinflussung. Z Gesamte Exp Med 38:137–152Google Scholar
  5. Brace RA (1981) Progress toward resolving the controversy of positive versus negative interstitial fluid pressure. Circ Res 49:281–297PubMedGoogle Scholar
  6. Chen HI, Granger HJ, Taylor AE (1976) Interaction of capillary, interstitial, and lymphatic forces in the canine hindpaw. Circ Res 39:245–254PubMedGoogle Scholar
  7. Ensink FBM, Carstens B, Geppert V, Gersing E, Hellige G (1981) The reliability of venous capacity and blood flow detection by plethysmography. In: Jagenau AHM (ed) Noninvasive methods on cardiovascular hemodynamics. Elsevier, Amsterdam, pp 169–183Google Scholar
  8. Fadnes HO, Reed RK, Aukland K (1978) Mechanisms regulating interstitial fluid volume. Lymphology 11:165–169PubMedGoogle Scholar
  9. Gauer OH, Thron HL (1965) Postural changes in the circulation. In: Hamilton WS (ed) Handbook of Physiology, sect. 2: Circulation vol. III, p 2430Google Scholar
  10. Gutmann J, Krötz J (1972) Zur Genauigkeit der Dehnungsmeßstreifenmethode bei der venösen Kapazitätsmessung. Folia Angiol 10:103–107Google Scholar
  11. Guyton AC (1976) Textbook of medical physiology. Chapt. 18. Saunders, Philadelphia, p 246Google Scholar
  12. Guyton AC, Granger HJ, Taylor AE (1971) Interstitial fluid pressure. Physiol Rev 51:527–563PubMedGoogle Scholar
  13. Henriksen O, Sejrsen P (1977) Local reflex in microcirculation in human skeletal muscle. Acta Physiol Scand 99:19–26PubMedGoogle Scholar
  14. Henriksen O, Sejrsen P, Paaske WP, Eickhoff JH (1983) Effect of chronic sympathetic denervation upon the transcapillary filtration rate induced by venous stasis. Acta Physiol Scand 117:171–176PubMedGoogle Scholar
  15. Henry JP, Gauer OH (1950) The influence on temperature upon venous pressure in the foot. J Clin Invest 29:855–861PubMedCrossRefGoogle Scholar
  16. Hildebrandt G (1960) Die Durchblutung der menschlichen Wadenmuskulatur bei orthostatischer Belastung. Pflügers Arch 272:6–7CrossRefGoogle Scholar
  17. Hörig C (1976) Impedanzplethysmographische Untersuchungen von Volumenänderungen an der unteren Extremität bei Lagewechsel. Dissertation, Medical Faculty, Kiel University, KielGoogle Scholar
  18. Jacobson S, Kjellmer J (1963) Relation between lymph flow and accumulation of capillary filtrate in exercising muscle. Acta Physiol Scand 59 [Suppl 213]:66Google Scholar
  19. Jacobson S, Kjellmer J (1964a) Flow and protein content of lymph in resting and exercising skeletal muscle. Acta Physiol Scand 60:278–285Google Scholar
  20. Jacobson S, Kjellmer J (1964b) Accumulation of fluid in exercising skeletal muscle. Acta Physiol Scand 60:286–292Google Scholar
  21. Kirkebø A, Wisnes A (1982) Regional tissue fluid pressure in rat calf muscle during sustained contraction or stretch. Acta Physiol Scand 114:551–556PubMedGoogle Scholar
  22. Kirsch K, Merke J, Hinghofer-Szalkay H (1980) Fluid volume distribution within superficial shell tissues along body axis during changes of body posture in man. Pflügers Arch 383:195–201CrossRefPubMedGoogle Scholar
  23. Krug H, Schlicher L (1960) Die Dynamik des venösen Rückstromes. Thieme, LeipzigGoogle Scholar
  24. Looke H (1936) Über die Volumenänderungen der unteren Extremitäten unter verschiedenen Bedingungen. Arbeitsphysiologie 9:496–504CrossRefGoogle Scholar
  25. Ludbrook J (1966) The musculovenous pumps of the human lower limb. Am Heart J 71:635–641CrossRefPubMedGoogle Scholar
  26. Ludbrook J, Loughlin J (1964) Regulation of volume in postarteriolar vessels of the lower limbs. Am Heart J 67:493–507CrossRefPubMedGoogle Scholar
  27. Lundvall J (1972) Tissue hyperosmolality as a mediator of vasodilation and transcapillary fluid flux in exercising skeletal muscle. Acta Physiol Scand 86 [Suppl 379]:1–42Google Scholar
  28. Lundvall J, Mellander S, Westling H, White T (1972) Fluid transfer between blood and tissues during exercise. Acta Physiol Scand 85:258–269PubMedCrossRefGoogle Scholar
  29. Mellander S, Öberg B, Odelram H (1964) Vascular adjustments to increased transmural pressure in cat and man with special reference to shifts in capillary fluid transfer. Acta Physiol Scand 61:34–48PubMedGoogle Scholar
  30. Nicolaysen G, Noddeland H, Aukland K (1980) Plasma colloid osmotic pressure on venous blood from the foot of man in the sitting position. Acta Physiol Scand 109:5AC4Google Scholar
  31. Noddeland H, Aukland K, Nicolaysen G (1981) Plasma colloid osmotic pressure in venous blood from the human foot in orthostasis. Acta Physiol Scand 113:447–454PubMedGoogle Scholar
  32. Olszewski W, Engeset A, Jaeger PM, Sokolowski J, Theodorsen L (1977) Flow and composition of leg lymph in normal men during venous stasis, muscular activity and local hyperthermia. Acta Physiol Scand 99:149–155PubMedGoogle Scholar
  33. Pollack AA, Wood EH (1949) Venous pressure in the saphenous vein at the ankle in man during exercise and changes in posture. J Appl Physiol 1:649–662PubMedGoogle Scholar
  34. Reeves JT, Grover RF, Blunt SG, Filley GF (1961) Cardiac output response to standing and treadmill walking. J Appl Physiol 16:283–288PubMedGoogle Scholar
  35. Rieckert H (1970) Die Hämodynamik des venösen Rückflusses aus der unteren Extremität. Arch Kreislaufforsch 62:293–318CrossRefPubMedGoogle Scholar
  36. Rieckert H (1978) Die Druckverhältnisse im Venensystem des Fußes in Ruhe und bei muskulärer Aktivität. In: May R, Kriessmann A (eds) Periphere Venendruckmessung. Thieme, StuttgartGoogle Scholar
  37. Rushmer RF (1961) Cardiovascular dynamics. Effects of posture, 2nd edn. Saunders, Philadelphia, p 171Google Scholar
  38. Schnizer W, Klatt J, Baeker H, Rieckert H (1978) Vergleich von szintigraphischen und plethysmographischen Messungen zur Bestimmung des kapillären Filtrationskoeffizienten in der menschlichen Extremität. Basic Res Cardiol 73:77–84CrossRefPubMedGoogle Scholar
  39. Schnizer W, Hinneberg H, Moser H, Küper K (1979) Intraand extravascular volume changes in the human forearm after static hand grip exercise. Eur J Appl Physiol 41:131–140CrossRefGoogle Scholar
  40. Sejrsen P, Henriksen O, Paaske WP (1981a) Effect of orthostatic blood pressure changes upon capillary filtration-absorption rate in the human calf. Acta Physiol Scand 111:287–291PubMedGoogle Scholar
  41. Sejrsen P, Henriksen O, Paaske WP, Nielsen SL (1981b) Duration of increase in vascular volume during venous stasis. Acta Physiol Scand 111:293–298PubMedGoogle Scholar
  42. Stick C (1981) Zur Problematik der Messung filtrationsbedingter Volumenänderungen der Extremitäten mit der Impedanzplethysmographie. Eur J Appl Physiol 47:405–418CrossRefGoogle Scholar
  43. Stick C, Stöfen P, Witzleb E (1985a) On physiological edema in man's lower extremity. Eur J Appl Physiol 54:442–449CrossRefGoogle Scholar
  44. Stick C, Jaeger H, Witzleb E (1985b) Eine Methode zur Artefaktunterdrückung bei der Messung des peripheren Venendrucks während Muskelarbeit. VASA 14:239–243PubMedGoogle Scholar
  45. Taylor A, Gibson H, Granger HJ, Guyton AC (1973) The interaction between intracapillary and tissue forces in the overall regulation of interstitial fluid volume. Lymphology 6:192–208PubMedGoogle Scholar
  46. Taylor AE (1981) Capillary fluid filtration, Starling forces and lymph flow. Circ Res 49:557–575PubMedGoogle Scholar
  47. Waterfield RL (1931) The effect of posture on the volume of the leg. J Physiol (Lond) 72:121–131Google Scholar
  48. White JC, Field ME, Drinker CK (1933) On the protein content and normal flow of lymph from the foot of the dog. Am J Physiol 103:34–44Google Scholar
  49. Whitney RJ (1953) The measurement of volume changes in human limbs. J Physiol 121:1–27PubMedGoogle Scholar
  50. Wiig H, Reed RK, Aukland K (1987) Measurement of interstitial fluid pressure in dogs: evaluation of methods. Am J Physiol 253 (Heart Circ Physiol 22):H283-H290PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • C. Stick
    • 1
  • H. Grau
    • 1
  • E. Witzleb
    • 1
  1. 1.Institut für angewandte Physiologie und medizinische Klimatologie der Universität KielKiel 1Federal Republic of Germany

Personalised recommendations