Advertisement

Journal of Low Temperature Physics

, Volume 106, Issue 5–6, pp 653–671 | Cite as

Zero-temperature relaxation in spin-polarized fermi liquids

  • A. E. Meyerovich
  • A. Stepaniants
Articles

Abstract

We discuss the effect of zero-temperature attenuation, which has been recently observed in spin dynamics of spin-polarized Fermi liquids, on other Fermi-liquid processes. The transfer of this attenuation mechanism from transverse spin dynamics to longitudinal processes can be caused by the magnetic dipole interaction, namely, by the direct dipole processes and the dipole coupling between the transverse spin dynamics and the longitudinal transport and relaxation processes. We calculated the zero-temperature sound attenuation in spin-polarized Fermi liquids, corrections to the threshold of spin-wave (Castaing) instability, and the effective zero-temperature viscosity and longitudinal relaxation time in low- and high-frequency regimes.

Keywords

Viscosity Attenuation Relaxation Time Magnetic Material Relaxation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. E. Meyerovich,Phys. Lett. A 107, 177 (1985).CrossRefADSGoogle Scholar
  2. 2.
    A. E. Meyerovich, inHelium Three, W. P. Halperin and L. P. Pitaevski, eds. Elsevier, Amsterdam (1990), pp. 757–879.Google Scholar
  3. 3.
    J. W. Jeon and W. J. Mullin,J. Phys. 49, 1691 (1988);Phys. Rev. Lett. 62, 2691 (1989);J. Low Temp. Phys. 88, 483 (1992).Google Scholar
  4. 4.
    D. I. Golosov and A. E. Ruckenstein,Phys. Rev. Lett. 75 (1994).Google Scholar
  5. 5.
    A. E. Meyerovich, S. Stepaniants, and F. Laloe,Phys. Rev. B (1995).Google Scholar
  6. 6.
    A. E. Meyerovich, and K. A. Musaelian,Phys. Rev. Lett. 72, 1710 (1994);Phys. Rev. B 47, 2897 (1993);J. Low Temp. Phys.89, 781 (1992);94, 249 (1994);95, 789 (1994).CrossRefADSGoogle Scholar
  7. 7.
    L.-J. Wei, N. Kalenchofsky, and D. Candela,Phys. Rev. Lett. 71, 879 (1993).CrossRefADSGoogle Scholar
  8. 8.
    J. Owers-Bradley, A. Child, and R. M. Bowley,Physica B 194–196, 903 (1994) [Proc. LT-20]; J. H. Ager, A. Child, R. Konig, J. R. Owers-Bradley, and R. M. Bowley,J. Low Temp. Phys.99, 683 (1995).CrossRefGoogle Scholar
  9. 9.
    I. A. Fomin, private communication.Google Scholar
  10. 10.
    P.-J. Nacher and E. Stolz,J. Low Temp. Phys. 101, 311 (1995); E. Stolz, J. Tannenhauser, and P.-J. Nacher,J. Low Temp. Phys. 101, 839 (1995).CrossRefGoogle Scholar
  11. 11.
    A. E. Meyerovich and A. Stepaniants, unpublished.Google Scholar
  12. 12.
    E. P. Bashkin and A. E. Meyerovich,Adv. Phys. 30, 1 (1981).CrossRefADSGoogle Scholar
  13. 13.
    D. Vollhardt and P. Wölfle,Phys. Rev. Lett. 47, 190 (1981).CrossRefADSGoogle Scholar
  14. 14.
    K. S. Bedell and D. E. Meltzer,J. Low Temp. Phys. 63, 215 (1986).CrossRefGoogle Scholar
  15. 15.
    M. H. Cohen and F. Keffer,Phys. Rev. 99, 1128 (1955).CrossRefADSGoogle Scholar
  16. 16.
    G. Deville, M. Bernier, and J. M. Delrieux,Phys. Rev. B 19, 5666 (1979).CrossRefADSGoogle Scholar
  17. 17.
    E. D. Nelson and W. J. Mullin,J. Low. Temp. Phys. 97, 251 (1994); R. J. Ragan and W. J. Mullin,J. Low Temp. Phys. 102, 461 (1966).CrossRefGoogle Scholar
  18. 18.
    L. D. Landau,Sov. Phys.-JETP 5, 101 (1958) [Zh. Eksp. Teor. Fiz.32, 59 (1957)].Google Scholar
  19. 19.
    R. Konig, J. H. Ager, R. M. Bowley, J. R. Owers-Bradley, and A. E. Meyerovich,J. Low Temp. Phys. 101, 833 (1995).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • A. E. Meyerovich
    • 1
  • A. Stepaniants
    • 1
  1. 1.Departments of PhysicsUniversity of Rhode IslandKingstonUSA

Personalised recommendations