Journal of Low Temperature Physics

, Volume 106, Issue 5–6, pp 615–641 | Cite as

Bose-Einstein condensation in a harmonic potential

  • W. J. Mullin
Articles

Abstract

We examine several features of Bose-Einstein condensation (BEC) in an external harmonic potential well. In the thermodynamic limit, there is a phase transition to a spatial Bose-Einstein condensed state for dimensionD≥2. The thermodynamic limit requires maintaining constant average density by weakening the potential while increasing the particle numberN to infinity, while of course in real experiments the potential is fixed andN stays finite. For such finite ideal harmonic systems we show that a BEC still occurs, although without a true phase transition, below a certain “pseudo-critical” temperature, even forD=1. We study the momentum-space condensate fraction and find that it vanishes as\({1 \mathord{\left/ {\vphantom {1 {\sqrt N }}} \right. \kern-\nulldelimiterspace} {\sqrt N }}\) in any number of dimensions in the thermodynamic limit. InD≤2 the lack of a momentum condensation is in accord with the Hohenberg theorem, but must be reconciled with the existence of a spatial BEC inD=2. For finite systems we derive theN-dependence of the spatial and momentum condensate fractions and the transition temperatures, features that may be experimentally testable. We show that theN-dependence of the 2D ideal-gas transition temperature for a finite system cannot persist in the interacting case because it violates a theorem due to Chester, Penrose, and Onsager.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell,Science 269, 198 (1995).ADSGoogle Scholar
  2. 2.
    K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle,Phys. Rev. 75, 3969 (1995).ADSGoogle Scholar
  3. 3.
    C. C. Bradley, C. A. Sachett, J. J. Tollett, and R. G. Hulet,Phys. Rev. 75, 1687 (1995).ADSGoogle Scholar
  4. 4.
    M. F. M. Osborne,Phys. Rev. 76, 396 (1949).CrossRefADSMATHMathSciNetGoogle Scholar
  5. 5.
    J. M. Ziman,Phil. Mag. 44, 548 (1953).MATHGoogle Scholar
  6. 6.
    D. L. Mills,Phys. Rev. 134, A306 (1964).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    D. F. Goble and L. E. H. Trainor,Can. J. Phys. 44, 27 (1966);Phys. Rev. 157, 167 (1967).ADSGoogle Scholar
  8. 8.
    D. A. Kruger,Phys. Rev. 172, 211 (1968).CrossRefADSGoogle Scholar
  9. 9.
    Y. Imry,Ann. Phys. 51, 1 (1969).CrossRefADSGoogle Scholar
  10. 10.
    M. N. Barber, inPhase Transitions and Critical Phenomena, ed. C. Domb and M. S. Green (Academic Press, London, 1983), Vol. 8, p. 146.Google Scholar
  11. 11.
    S. Grossmann and M. Holthaus,Z. Naturforsch. 50a, 323 (1995);Z. Phys. B 97, 319 (1995).Google Scholar
  12. 12.
    W. J. Mullin, “Pseudo-Bose Condensation in Finite Ideal Systems” unpublished report, 1981.Google Scholar
  13. 13.
    W. Ketterle and N. J. van Druten,Phys. Rev. A 54, 656 (1996).CrossRefADSGoogle Scholar
  14. 14.
    P. C. Hohenberg,Phys. Rev. 158, 383 (1967).CrossRefADSGoogle Scholar
  15. 15.
    C. V. Chester, inLectures in Theoretical Physics, ed. K. T. Mahanthappa (Gordon and Breach, Science Publishers, Inc., New York, 1968), Vol. 11B, p. 253Google Scholar
  16. 16.
    C. V. Chester, M. E. Fisher, and N. D. Mermin,Phys. Rev. 185, 760 (1969).CrossRefADSGoogle Scholar
  17. 17.
    O. Penrose and L. Onsager,Phys. Rev. 104, 576 (1956).CrossRefADSMATHGoogle Scholar
  18. 18.
    J. J. Rehr and N. D. Mermin,Phys. Rev. B 185, 3160 (1970).CrossRefADSGoogle Scholar
  19. 19.
    R. Masut and W. J. Mullin,Am. J. Phys. 47, 493 (1979).CrossRefADSGoogle Scholar
  20. 20.
    S. deGroot, G. J. Hooyman, and C. A. ten Seldam,Proc. R. Soc. (London) A 203, 266 (1950).ADSCrossRefGoogle Scholar
  21. 21.
    C. E. Campbell, J. G. Dash, and M. Schick,Phys. Rev. 26, 966 (1971).ADSGoogle Scholar
  22. 22.
    V. Bagnato, D. Pritchard, and D. Kleppner,Phys. Rev. A 35, 4354 (1987).CrossRefADSGoogle Scholar
  23. 23.
    V. Bagnato and D. Kleppner,Phys. Rev. A 44, 7439 (1991).CrossRefADSGoogle Scholar
  24. 24.
    S. Grossmann and M. Holthaus,Phys. Lett. A 208, 188 (1995);Z. Naturforsch. 50a, 921 (1995).CrossRefADSGoogle Scholar
  25. 25.
    W. Krauth,Phys. Rev. Letters 77, 3695 (1996).CrossRefADSGoogle Scholar
  26. 26.
    M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn, D. S. Durfee, and W. Ketterle, preprint.Google Scholar
  27. 27.
    H. Haugerud and F. Ravndal, cond-mat/9509041.Google Scholar
  28. 28.
    H. Haugerud, T. Haugset, and F. Ravndal, cond-mat/9605100; cond-mat/9611061Google Scholar
  29. 29.
    K. Kirsten and D. J. Toms,Phys. Lett. B 368, 119 (1996); cond-mat/9604031; condmat/9607047; cond-mat/9608032.CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    A. Widom,Phys. Rev. 168, 150 (1968).CrossRefADSGoogle Scholar
  31. 31.
    F. London,Superfluids (Dover, New York, 1964), Vol. II, p. 203; J. E. Robinson,Phys. Rev. 83, 678 (1951).Google Scholar
  32. 32.
    M. Abramowitz and I. A. StegunHandbook of Mathematical Functions (Dover, New York, 1972).MATHGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • W. J. Mullin
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MassachusettsAmherstUSA

Personalised recommendations