Advertisement

Hyperfine Interactions

, Volume 32, Issue 1–4, pp 535–549 | Cite as

μSR in polyacetylenes

  • K. Nagamine
  • K. Ishida
Mu and μ+ States in Solids

Abstract

In a series of μ+ experiments either at UT-MSL BOOM or at TRIUMF, we have found that the positive muon can create an interesting and systematic “after-effect” in the well-known organic semiconductor polymer polyacetylene, (CH)x or (CD)x: the localized unpaired electron at nearby carbon sites is produced in cis-polyacetylene, to form a muon radical; in trans-polyacetylene, the electron becomes mobile and takes “soliton”-like one dimensional rapid motion along the chain. Recently experiments were extended towards the following three directions: a) diffusion properties of the muon produced solition in trans-polyacetylene; b) the details of radical structure in cis-polyacetylene, and c) μSR experiments on I-doped polyacetylene. These works are reviewed along with the possible future perspectives.

Keywords

Polymer Thin Film Soliton Radical Structure Unpaired Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /1/.
    K. Nagamine, K. Ishida, T. Matsuzaki, K. Nishiyama, Y. Kuno, Y. Morozumi, T. Suzuki, T. Yamazaki, and H. Shirakawa, Hyperfine Interact. 17–19, (1984) 503.CrossRefGoogle Scholar
  2. /2/.
    H. Shirakawa and S. Ikeda, Polym. J. 2 (1971) 231.CrossRefGoogle Scholar
  3. /3/.
    H. Shirakawa, I. Ito and S. Ikeda, Die Macromol. Chim. 179 (1978) 1565.CrossRefGoogle Scholar
  4. /4/.
    B. R. Weinberger, E. Ehrenfreund, A. Pron, A. J. Heeger and A. G. MacDiarmid, J. Chem. Phys. 72 (1980) 4749.CrossRefADSGoogle Scholar
  5. /5/.
    M. Nechtschein, F. Devreux, R. L. Greene, T. C. Clarke and G. B. Street, Phys. Rev. Lett. 44 (1980) 356.CrossRefADSGoogle Scholar
  6. /6/.
    M. Nechtschein, F. Devreux, F. Genoud, M. Guglielmi and K. Holczer, Phys. Rev. B27 (1983) 61.CrossRefADSGoogle Scholar
  7. /7/.
    K. Mizoguchi, K. Kume, and H. Shirakawa, Solid State Commun, 50m 213 (1984); K. Kume, K. Mizoguchi, and H. Shirakawa, Mol. Cryst. Liq. Cryst. 117 (1985) 469.CrossRefGoogle Scholar
  8. /8/.
    K. Nagamine, K. Ishida, T. Matsuzaki, K. Nishiyama, Y. Kuno, T. Yamazaki, and H. Shirakawa, Phys. Rev. Lett. 42 (1979) 1698.CrossRefGoogle Scholar
  9. /9/.
    K. Ishida, K. Nagamine, T. Matsuzaki, Y. Kuno, T. Yamazaki, E. Rorikai, H. Shirakawa, and J.H. Brewer, Phys. Lett. 55 (1985) 2009.CrossRefGoogle Scholar
  10. /10/.
    K. Nishiyama, K. Ishida, K. Nagamine, T. Matsuzaki, Y. Kuno, H. Shirakawa, R.F. Kiefl and J.H. Brewer, contribution to μSR86.Google Scholar
  11. /11/.
    K. Ishida, K. Nagamine and H. Shirakawa, contribution to ICSM86.Google Scholar
  12. /12/.
    K. Nagamine, Hyperfine Interact. 17–19 (1981) 787; UT-MSL Newsletter No. 1-5 (1981–5), edited by K. Nagamine and T. Yamazaki.CrossRefGoogle Scholar
  13. /13/.
    M.A. Butler, L.R. Walker and Z.G. Soos, J. Chem. Phys. 64 (1976) 3592.CrossRefADSGoogle Scholar
  14. /14/.
    E. Roduner, W. Sturb, P. Burkhard, J. Hochmann, P.W. Percival, H. Fischer, M. Ramos and B.C. Webster, Chem. Phys. 67 (1982) 275.CrossRefGoogle Scholar
  15. /15/.
    T. Matsuyama, H. Sakai, H. Yamaoka, Y. Maeda and H. Shirakawa, J. Phys. Soc. Japan 52 (1983) 2238.CrossRefGoogle Scholar
  16. /16/.
    K. Kehr, private communication.Google Scholar

Copyright information

© J.C. Baltzer A.G., Scientific Publishing Company 1986

Authors and Affiliations

  • K. Nagamine
    • 1
  • K. Ishida
    • 2
  1. 1.Meson Science Laboratory, Faculty of ScienceUniversity of TokyoTokyoJapan
  2. 2.Metal Physics LaboratoryInstitute of Physical and Chemical Research (RIKEN)WakohJapan

Personalised recommendations