Acta Mathematica

, Volume 151, Issue 1, pp 1–48 | Cite as

On the local solvability and the local integrability of systems of vector fields

  • François Treves


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B1]
    Barlet, D.,Majoration du volume des fibres génériques et forme géométrique du théorème d'aplatissement. Note C.R.A.S. Paris, série A, t. 288, p. 29–31.Google Scholar
  2. [B2]
    —, Même titre in Seminaire Lelong-Skoda (Analyse) 1978–79.Springer Lecture Notes 822, p. 1–17.MathSciNetGoogle Scholar
  3. [F]
    Federer, H.,Geometric measure theory. Grundlehren der Math. Wiss. Springer-Verlag, no. 153, 1969.Google Scholar
  4. [G]
    Goresky, M., Triangulation of stratified objects.Proc. Amer. Math. Soc., 72 (1978), 193–200.CrossRefMATHMathSciNetGoogle Scholar
  5. [H1]
    Hironaka, H.,Introduction to real analytic sets and real analytic maps, Quaderni del gruppo... Istituto L. Tonelli, Pisa (Italy), Theorem 5.11.Google Scholar
  6. [H2]
    Hironaka, H., Lejeune-Jalabert, M. &Teissier, B., Platificateur local et aplatissement.Singularités à Cargèse, Astérisque 7–8 (1973), p. 1.Google Scholar
  7. [Ha1]
    Hardt, R. M., Stratification of real analytic mappings and images.Invent. Math., 28 (1975), 193–208.CrossRefMATHMathSciNetGoogle Scholar
  8. [Ha2]
    —, Semi algebraic local—triviality in semi-algebraic mappings.Amer. J. Math., 102 (1980), 291–302.MATHMathSciNetGoogle Scholar
  9. [Ha3]
    —, Triangulation of subanalytic sets and proper light subanalytic maps.Invent. Math., 38 (1977), 2007–217.MathSciNetGoogle Scholar
  10. [Ma]
    Mather, J., Stratifications and mappings. InDynamical Systems, Academic Press 1973.Google Scholar
  11. [T]
    Trèves, F., On the local solvability and the local integrability of systems of vector fields.Google Scholar

Copyright information

© Almqvist & Wiksell 1983

Authors and Affiliations

  • François Treves
    • 1
  1. 1.Rutgers UniversityNew BrunswickUSA

Personalised recommendations