Acta Mathematica

, Volume 191, Issue 2, pp 143–189 | Cite as

Noncritical holomorphic functions on Stein manifolds

  • Franc Forstnerič


Manifold Stein Holomorphic Function Stein Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]Andersén, E., Volume-preserving automorphisms ofC n.Complex Variables Theory Appl., 14 (1990), 223–235.MATHMathSciNetGoogle Scholar
  2. [AL]Andersén, E. &Lempert, L., On the group of holomorphic automorphisms ofC n.Invent. Math., 110 (1992), 371–388.CrossRefMathSciNetMATHGoogle Scholar
  3. [AF]Andreotti, A. &Frankel, T., The Lefschetz theorem on hyperplane sections.Ann. of Math. (2), 69 (1959), 713–717.CrossRefMathSciNetGoogle Scholar
  4. [BN]Bell, S. R. &Narasimhan, R., Proper holomorphic mappings of complex spaces, inSeveral Complex Variables, Vol. VI, pp. 1–38, Encyclopaedia Math. Sci., 69, Springer-Verlag, Berlin, 1990.Google Scholar
  5. [DG]Docquier, F &Graubert, H., Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten.Math. Ann., 140 (1960), 94–123.CrossRefMathSciNetMATHGoogle Scholar
  6. [EM]Eliashberg, Y. &Mishachev, N.,Introduction to the h-Principle. Graduate Studies in Math., 48. Amer. Math. Soc., Providence, RI, 2002.MATHGoogle Scholar
  7. [Fe]Feit, S. D.,k-mersions of manifolds.Acta Math., 122 (1969), 173–195.CrossRefMATHMathSciNetGoogle Scholar
  8. [Fo1]Forster, O., Some remarks on parallelizable Stein manifolds.Bull. Amer. Math. Soc., 73 (1967), 712–716.MATHMathSciNetCrossRefGoogle Scholar
  9. [Fo2] —, Plongements des variétés de Stein.Comment. Math. Helv., 45 (1970), 170–184.MATHMathSciNetGoogle Scholar
  10. [F1]Forstnerič, F., Approximation by automorphisms on smooth submanifolds ofC n.Math. Ann., 300 (1994), 719–738.CrossRefMathSciNetMATHGoogle Scholar
  11. [F2] —, Interpolation by holomorphic automorphisms and embeddings inC n.J. Geom. Anal., 9 (1999), 93–117.MathSciNetMATHGoogle Scholar
  12. [F3] —, The homotopy principle in complex analysis: A survey, inExplorations in Complex and Riemannian Geometry: A Volume Dedicated to Robert E. Greene (J. Bland, K.-T. Kim and S. G. Krantz, eds.), pp. 73–99. Contemporary Mathematics, 332. Amer. Math. Soc., Providence, RI, 2003.Google Scholar
  13. [FL]Forstnerič, F. &Løw, E., Global holomorphic equivalence of smooth submanifolds inC n.Indiana Univ. Math. J., 46 (1997), 133–153.MathSciNetMATHGoogle Scholar
  14. [FLØ]Forstnerič, F., Løw, E. &Øvrelid, N., Solving thed- and\(\bar \partial \)-equations in thin tubes and applications to mappings.Michigan Math. J., 49 (2001), 369–416.CrossRefMathSciNetMATHGoogle Scholar
  15. [FP1]Forstnerič, F. &Prezelj, J., Oka’s principle for holomorphic fiber bundles with sprays.Math. Ann., 317 (2000), 117–154.CrossRefMathSciNetMATHGoogle Scholar
  16. [FP2]—, Extending holomorphic sections from complex subvarieties.Math. Z., 236 (2001), 43–68.CrossRefMathSciNetMATHGoogle Scholar
  17. [FP3]—, Oka’s principle for holomorphic submersions with sprays.Math. Ann., 322 (2002), 633–666.CrossRefMathSciNetMATHGoogle Scholar
  18. [FR]Forstnerič, F. &Rosay, J.-P., Approximation of biholomorphic mappings by automorphisms ofC n.Invent. Math., 112 (1993), 323–349; Erratum inInvent. Math., 118 (1994), 573–574.CrossRefMathSciNetMATHGoogle Scholar
  19. [God]Godbillon, C.,Feuilletages. Études géométriques. Progr. Math., 98. Birkhäuser, Basel, 1991.MATHGoogle Scholar
  20. [GG]Golubitsky, M. &Guillemin, V.,Stable Mappings and their Singularities. Graduate Texts in Math., 14. Springer-Verlag, New York-Heidelberg, 1973.MATHGoogle Scholar
  21. [Gra]Grauert, H., Analytische Faserungen über holomorph-vollständigen Räumen.Math. Ann., 135 (1958), 263–273.CrossRefMATHMathSciNetGoogle Scholar
  22. [Gro1]Gromov, M., Stable mappings of foliations into manifolds.Izv. Akad. Nauk SSSR Ser. Mat., 33 (1969), 707–734 (Russian).MATHMathSciNetGoogle Scholar
  23. [Gro2]—, Convex integration of differential relations, I.Izv. Akad. Nauk SSSR Ser. Mat., 37 (1973), 329–343 (Russian); English translation inMath. USSR-Izv., 7 (1973), 329–343.MATHMathSciNetGoogle Scholar
  24. [Gro3]—,Partial Differential Relations, Ergeb. Math. Grenzgeb. (3), 9. Springer-Verlag, Berlin, 1986.MATHGoogle Scholar
  25. [Gro4]—, Oka’s principle for holomorphic sections of elliptic bundles.J. Amer. Math. Soc., 2 (1989), 851–897.CrossRefMATHMathSciNetGoogle Scholar
  26. [GN]Gunning, R. C. &Narasimhan, R., Immersion of open Riemann surfaces.Math. Ann., 174 (1967), 103–108.CrossRefMathSciNetMATHGoogle Scholar
  27. [GR]Gunning, R. C. &Rossi, H.,Analytic Functions of Several Complex Variables. Prentice-Hall, Englewood Cliffs, NJ, 1965.MATHGoogle Scholar
  28. [Ha1]Haefliger, A., Variétés feuilletés.Ann. Scuola Norm. Sup. Pisa (3), 16 (1962), 367–398MATHMathSciNetGoogle Scholar
  29. [Ha2]—, Lectures on the theorem of Gromov, inProceedings of Liverpool Singularities Symposium, Vol. II (1969/1970), pp. 128–141. Lecture Notes in Math., 209, Springer-Verlag, Berlin, 1971.Google Scholar
  30. [HW1]Harvey, F. R. &Wells, R. O., Jr., Holomorphic approximation and hyperfunction theory on aC 1 totally real submanifold of a complex manifold.Math. Ann., 197 (1972), 287–318.CrossRefMathSciNetMATHGoogle Scholar
  31. [HW2]—, Zero sets of non-negative strictly plurisubharmonic functions.Math. Ann., 201 (1973), 165–170.CrossRefMathSciNetMATHGoogle Scholar
  32. [HL1]Henkin, G. M. &Leiterer, J.,Theory of Functions on Complex Manifolds. Akademie-Verlag, Berlin, 1984.MATHGoogle Scholar
  33. [HL2]—,Andreotti-Grauert Theory by Integral Formulas. Progr. Math., 74 Birkhäuser Boston, Boston, 1988.MATHGoogle Scholar
  34. [HL3]—, The Oka-Grauert principle without induction over the base dimension.Math. Ann., 311 (1998), 71–93.CrossRefMathSciNetMATHGoogle Scholar
  35. [Hi1]Hirsch, M. W., Immersions of manifolds.Trans. Amer. Math. Soc., 93 (1959), 242–276.CrossRefMATHMathSciNetGoogle Scholar
  36. [Hi2]—, On imbedding differential manifolds in euclidean space.Ann. of Math. (2), 73 (1961), 566–571.CrossRefMATHMathSciNetGoogle Scholar
  37. [Hö1]Hörmander, L.,L 2 estimates and existence theorems for the\(\bar \partial \) operator.Acta Math., 113 (1965), 89–152.CrossRefMATHMathSciNetGoogle Scholar
  38. [Hö2]—,An Introduction to Complex Analysis in Several Variables, 3rd edition. North-Holland Math. Library, 7. North-Holland, Amsterdam, 1990.MATHGoogle Scholar
  39. [HöW]Hörmander, L. &Wermer, J., Uniform approximations on compact sets inC n.Math. Scand., 23 (1968), 5–21.MathSciNetMATHGoogle Scholar
  40. [Ko]Kolmogorov, A., On the representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables.Dokl. Akad. Nauk SSSR (N.S.), 108 (1956), 179–182 (Russian).MATHMathSciNetGoogle Scholar
  41. [Ku]Kutzschebauch, F., Andersén-Lempert theory with parameters. Preprint, 2002.Google Scholar
  42. [LV]Lehto, O. &Virtanen, K. I.,Quasiconformal Mappings in the Plane, 2nd edition. Grundlehren Math. Wiss., 126. Springer-Verlag, New York-Heidelberg, 1973.Google Scholar
  43. [MS]Milnor, J. W. &Stasheff, J. D.,Characteristic Classes. Ann. of Math. Stud., 76. Princeton Univ. Press, Princeton, NJ, 1974.MATHGoogle Scholar
  44. [N]Nishimura, Y., Examples of analytic immersions of two-dimensional Stein manifolds intoC 2.Math. Japon., 26 (1981), 81–83.MATHMathSciNetGoogle Scholar
  45. [Pf]Pfluger, A., Über die Konstruktion Riemannscher Flächen durch Verheftung.J. Indian Math. Soc. (N.S.), 24 (1960), 401–412.MathSciNetGoogle Scholar
  46. [Ph1]Phillips, A., Submersions of open manifolds.Topology, 6 (1967), 171–206.CrossRefMATHMathSciNetGoogle Scholar
  47. [Ph2]—, Foliations on open manifolds, I.Comment. Math. Helv., 43 (1968), 204–211.MATHMathSciNetGoogle Scholar
  48. [Ph3]—, Foliations on open manifolds, II.Comment. Math. Helv., 44 (1969), 367–370.MATHMathSciNetGoogle Scholar
  49. [Ph4]—, Smooth maps transverse to a foliation.Bull. Amer. Math. Soc., 76 (1970), 792–797.MATHMathSciNetGoogle Scholar
  50. [Ph5]—, Smooth maps of constant rank.Bull. Amer. Math. Soc., 80 (1974), 513–517.MATHMathSciNetGoogle Scholar
  51. [Ra]Ramspott, K. J., Stetige und holomorphe Schnitte in Bündeln mit homogener Faser.Math. Z., 89 (1965), 234–246.CrossRefMATHMathSciNetGoogle Scholar
  52. [RS]Range, R. M. &Siu, Y. T.,C k approximation by holomorphic functions and\(\bar \partial \)-closed forms onC k submanifolds of a complex manifold.Math. Ann., 210 (1974), 105–122.CrossRefMathSciNetMATHGoogle Scholar
  53. [Ro]Rosay, J. P., A counterexample related to Hartogs’ phenomenon (a question by E. Chirka).Michigan Math. J., 45 (1998), 529–535.CrossRefMATHMathSciNetGoogle Scholar
  54. [Sm]Smale, S., The classification of immersions of spheres in Euclidean spaces.Ann. of Math. (2), 69 (1959), 327–344.CrossRefMATHMathSciNetGoogle Scholar
  55. [Sp]Spring, D.,Convex Integration Theory. Solutions to the h-Principle in Geometry and Topology. Monogr. Math., 92. Birkhäuser, Basel, 1998.MATHGoogle Scholar
  56. [Ste]Stein, K., Analytische Funktionen mehrerer komplexer Veränderlichen zu vorgegebenen Periodizitätsmoduln und das zweite Cousinsche Problem.Math. Ann., 123 (1951), 201–222.CrossRefMATHMathSciNetGoogle Scholar
  57. [Sto]Stout, E. L.,The Theory of Uniform Alglebras. Bogden & Quigley, Tarrytown-on-Hudson, NY, 1971.Google Scholar
  58. [Tho]Thom, R., Un lemme sur les applications différentiables.Bol. Soc. Mat. Mexicana (2), 1 (1956), 59–71.MATHMathSciNetGoogle Scholar
  59. [Th1]Thurston, W., The theory of foliations of codimension greater than one.Comment. Math. Helv., 49 (1974), 214–231.MATHMathSciNetGoogle Scholar
  60. [Th2]—, Existence of codimension-one foliations.Ann. of Math. (2), 104 (1976), 249–268.CrossRefMATHMathSciNetGoogle Scholar
  61. [V]Varolin, D., The density property for complex manifolds and geometric structures.J. Geom. Anal., 11 (2001), 135–160.MATHMathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 2003

Authors and Affiliations

  • Franc Forstnerič
    • 1
  1. 1.Institute of Mathematics, Physics and MechanicsUniversity of LjubjanaLjubjanaSlovenia

Personalised recommendations