, Volume 184, Issue 3, pp 171–189 | Cite as

Limnological reconnaissance of waterbodies in central and southern Nepal

  • John R. Jones
  • Matthew F. Knowlton
  • Deep B. Swar


Ionic composition of waterbodies in central and southern Nepal sampled in spring 1985 differed from that normally found in freshwater. Distinguishing characteristics were: 1) predominance of bicarbonate among the anions — accounting for > 90% of the negative equivalents in two-thirds of the waterbodies, 2) the near absence of sulfates — accounting for < 1 % of the anions in half the samples so that chloride exceeded sulfate (as meq/L) in three-fourths of the waters tested and 3) calcium was the dominant cation, although in certain waters the relative proportion of either magnesium or the monovalent cations was much higher than the world average. Regional patterns in water chemistry were apparent and are largely explained by differences in local geology, inputs from artesian wells or extensive use by humans. Most ionic salinity values were <400 mg/L. Using conventional criteria to assess trophic state, most water-bodies were eutrophic or hypereutrophic when judged by total phosphorus and chlorophyll content but as a whole the lakes sampled were low in nitrogen. Nitrogen: phosphorus ratios (generally < 10) and a significant empirical relation for chlorophyll-nitrogen provide evidence that nitrogen limited algal biomass. Secchi transparency values indicate light regimes were affected by nonalgal materials.

Key words

Nepal limnology nutrient limitation ionic salinity chlorophyll 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aizaki, M., A. Terashima, H. Nakahara, T. Nishio & Y. Ishida, 1987. Trophic status of Tilitso, a high altitude Himalayan lake. Hydrobiologia 153: 217–224.Google Scholar
  2. American Public Health Association, 1980. Standard methods for the examination of water and wastewater. 15th ed., APHA, New York, 1133 pp.Google Scholar
  3. Bachmann, R. W., 1980. The role of agricultural sediments and chemicals in eutrophication. J. Wat. Pollut. Cont. Fed. 52: 2425–2432.Google Scholar
  4. Banerjee, D. K., B. Bhatia & I. Haq, 1983. Comparison of seasonal and diurnal patterns of some physico-chemical parameters of the open and closed parts of Loktak Lake, Manipur, India. Int. J. Envir. Studies 21: 243–250.Google Scholar
  5. Brown, T. E. & F. L. Richardson, 1968. The effect of growth environment on the physiology of algae: Light intensity. J. Phycol. 4: 38–54.Google Scholar
  6. Canfield, D. E., Jr., 1983. Prediction of chlorophylla concentrations in Florida lakes: The importance of phosphorus and nitrogen. War. Resour. Bull. 19: 255–262.Google Scholar
  7. Canfield, D. E., Jr. & R. W. Bachmann, 1981. Prediction of total phosphorus concentrations, chlorophylla, and Secchi depths in natural and artificial lakes. Can. J. Fish. aquat. Sci. 38: 414–423.Google Scholar
  8. Canfield, D. E., Jr. & L. M. Hodgson, 1983. Prediction of Secchi disc depths in Florida lakes: Impact of algal biomass and organic color. Hydrobiologia 99: 51–60.CrossRefGoogle Scholar
  9. Canfield, D. E. Jr., K. A. Langeland, M. J. Maceina, W. T. Haller, J. V. Shireman & J. R. Jones, 1983. Trophic state classification of lake with aquatic macrophytes. Can. J. Fish. aquat. Sci. 40: 1713–1718.Google Scholar
  10. D'Elia, C. F., P. A. Steudler & N. Corwin, 1977. Determination of total nitrogen in aqueous samples using persulfate digestion. Limnol. Oceanogr. 22: 760–764.Google Scholar
  11. Dillon, P. J. & F. H. Rigler, 1974. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19: 767–773.Google Scholar
  12. Daems, G. & H. J. Dumont, 1974. Rotifers from Nepal, with the description of a new species ofScandium and a discussion of the Nepalese representatives of the genusHexarthra. Biol. Jb. Dodonaea 42: 61–81.Google Scholar
  13. Dumont, H. J. & I. Van De Velde, 1977. Report on a collection of Cladocera and Copepoda from Nepal. Hydrobiologia 53: 55–65.CrossRefGoogle Scholar
  14. Dussart, B. H., 1974. Biology of inland waters in humid tropical Asia. In UNESCO. Natural Resources of Humid Tropical Asia. Nat. Resour. Res. 12: 331–353.Google Scholar
  15. Ferro, W., 1978/79. Some limnological and biological data from Rara, a deep Hamalayan lake in Nepal. J. Nepal Res. Centre 2/3: 241–261.Google Scholar
  16. Ferro, W., 1981/82. Limnology of the Pokhara Valley lakes (Himalayan region, Nepal) and its implications for fishery and fish culture. J. Nepal Res. Centre. 5/6: 27–52.Google Scholar
  17. Ferro, W. & D. B. Swar, 1978. Bathymetric maps from three lakes in Pokhara Valley (Nepal). J. Inst. Sc. 1: 177–188.Google Scholar
  18. Fernando, C. H., 1984. Reservoirs and lakes of southeast Asia (Oriental Region). In Lakes and reservoirs. Taub, F. B. (ed.) Ecosystems of the World, 23. Elsevier, Amsterdam: 411–446.Google Scholar
  19. Forsberg, C. & S.-O. Ryding, 1980. Eutrophication parameters and trophic state indices in 30 Swedish waste-receiving lakes. Arch. Hydrobiol. 89: 189–207.Google Scholar
  20. Golterman, H. L. & R. S. Clymo, 1969. Methods for chemical analysis of freshwaters. International Biological Programme Handbook No. 8. Blackwell Sci. Publs. Oxford & Edinburgh 166 pp.Google Scholar
  21. Grobbelaar, J. U., 1984. Phytoplankton productivity in a shallow turbid impoundment, Wuras Dam. Verb. int. Verh. Limnol. 22: 1594–1601.Google Scholar
  22. Handa, B. K., 1980. Presentation and interpretation of surface water chemical analysis data. In Proceedings of the Symposium on Chemical Analysis of Geological Materials-Techniques, Applications and Interpretation, Calcutta, 1979. Geological Society of India, Special Publication Series No. 1. New Delhi, India: 415–425.Google Scholar
  23. Handa, B. K., 1983. Hydrochemical investigations in the alluvial formations of Uttar Pradesh in the Phreatic Zone. Proc. of the National Seminar on Assessment, Development and Management of Ground Water Resources, New Delhi, India: 305–315.Google Scholar
  24. Handa, B. K., A. Kumar & D. K. Goel, 1982. Eutrophication of Naini Tal Lake. Indian Assoc. Water Pollut. Cont. 9: 110–120.Google Scholar
  25. Hem, J. D., 1985. Study and interpretation of the chemical characteristics of natural water. 3rd. ed. Geological Survey Water-Supply Paper 2254. U.S. Gov. Print. Office. Washington, D.C.Google Scholar
  26. Hickel, B., 1973a. Limnological investigations in lake of the Pokhara Valley, Nepal. Int. Revue ges. Hydrobiol. 58: 659–672.Google Scholar
  27. Hickel, B., 1973b. Phytoplankton in two ponds in Kathmandu Valley (Nepal). Int. Revue ges. Hydrobiol. 58: 835–842.Google Scholar
  28. Hoyer, M. V. & J. R. Jones, 1983. Factors affecting the relation between phosphorus and chlorophyll a in midwestern reservoirs. Can. J. Fish. aquat. Sci. 40: 192–199.Google Scholar
  29. Hutchinson, G. E., 1937. Limnological studies in Indian Tibet. Int. Revue. ges. Hydrobiol. Hydrogr. 35: 134–177.Google Scholar
  30. Hutchinson, G. E., 1957. A treatise on limnology, Vol. 1. Geography, physics and chemistry. John Wiley & Sons, NY, 1015 pp.Google Scholar
  31. Jones, J. R. & R. W. Bachmann, 1976. Prediction of phosphorus and chlorophyll levels in lakes. J. Wat. Pollut. Cont. Fed. 48: 2176–2182.Google Scholar
  32. Jones, J. R. & R. W. Bachmann, 1978. Trophic status of Iowa lakes in relation to origin and glacial geology. Hydrobiologia 57: 267–273.Google Scholar
  33. Kaddah, M. T., 1967. Land form and use and characteristics of some soils in Nepal. Soil Sci. 104: 350–357.Google Scholar
  34. Kato, K. & H. Hayashi, 1982. Limnological pre-survey of Lake Phewa, Nepal. J. Fac. Sci. Shinshu Univ. 15: 27–29.Google Scholar
  35. Kaul, V., 1977. Limnological survey of Kashmir lakes with reference to trophic status and conservation. Int. J. Ecol. Envir. Sci. 3: 19–44.Google Scholar
  36. Khan, J. A. and A. Quajjum, 1966. On the ionic composition of five tropical fish-ponds of Aligarh (U.P.), India. Hydrobiologia 28: 195–202.CrossRefGoogle Scholar
  37. Khan, M. A., 1986. Hydrobiologia and organic production in a marl lake of Kashmir Himalayan Valley. Hydrobiologia 135: 233–242.CrossRefGoogle Scholar
  38. Khan, M. A. & D. P. Zutshi, 1980. Primary productivity and trophic status of a Kashmir Himalayan lake. Hydrobiologia 68: 3–8.CrossRefGoogle Scholar
  39. Knowlton, M. F., M. V. Hoyer & J. R. Jones, 1984. Incorporating temporal variability in the sampling design for trophic state assessment. Water Res. Bull. 20: 397–407.Google Scholar
  40. Larson, T. E. & A. M. Buswell, 1942. Calcium carbonate saturation index and alkalinity interpretations. J. Am. Wat. Wks Ass. 34: 1667–1684.Google Scholar
  41. Lewis, W. M. Jr., 1978. A compositional, phytogeographical and elementary structural analysis of the phytoplankton in a tropical lake: Lake Lanao, Philippines. J. Ecol. 66: 213–226.Google Scholar
  42. Loffler, H., 1969. High altitude lakes in Mt. Everest region. Verb. int. Ver. Limnol. 17: 373–385.Google Scholar
  43. Lohman, K., J. R. Jones, M. F. Knowlton, D. B. Swar, M. A. Pamperl & B. J. Brazos, 1988. Pre- and postmonsoon limnological characteristics of lakes in the Pokhara and Kathmander Valleys, Nepal. Verh. int. Ver. Limnol. 23: 558–565.Google Scholar
  44. Nakanishi, A. M., 1986. Limnological study in Phewa, Begnas and Rupa lakes. In Studies on distribution, adaptation and evolution of microoganisms in Nepal Himilayas (Second Report), Ishida, Y., (ed.) Kuzo Dogura, Kyoto, Japan: 3–13.Google Scholar
  45. Okino, T. & Y. Satoh, 1986. Morphology, physics, chemistry and biology of Lake Rara in West Nepal. Hydrobiologia 140: 125–133.Google Scholar
  46. Pridmore, R. D., W. N. Vant & J. C. Rutherford, 1985. Chlorophyll-nutrient relationships in North Island Lakes (New Zealand). Hydrobiologia 121: 181–189.CrossRefGoogle Scholar
  47. Sakamoto, M., 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch. Hydrobiol. 62: 1–28.Google Scholar
  48. Sartory, D. P., J. U. Grobbelaar, 1984. Extraction of chlorophylla from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114: 177–187.Google Scholar
  49. Schindler, D. W., 1977. The evolution of phosphorus limitation in lakes. Science 195: 260–262.Google Scholar
  50. Sharma, C. K., 1977a. Geology of Nepal. Educational Enterpreses Ltd., Kathmandu. 164 pp.Google Scholar
  51. Sharma, C. K., 1977b. Natural resources of the Pokhara Valley. Kathmandu. 106 pp.Google Scholar
  52. Sharma, C. K., 1981. Ground water resources of Nepal. Kathmandu. 162 pp.Google Scholar
  53. Sharma, A. P. & M. C. Pant, 1979. Certain physico-chemical features, chlorophyll concentration and phytoplankton population in a high altitude lake. Trop. Ecol. 20: 101–113.Google Scholar
  54. Sharma, P. C. & M. C. Pant, 1987. Seasonality, population dynamics and production ofDaphnia longispina in the sub-tropical Lake Bhematal (V.P.), India. Int. Revue ges. Hydrobiol. 72: 71–80.Google Scholar
  55. Silva, E. I. L. & R. W. Davies, 1986. Primary productivity and related parameters in three different types of inland waters in Sri Lanka. Hydrobiologia 137: 239–249.Google Scholar
  56. Silva, E. I. L. & R. W. Davies, 1987. The seasonality of monsoonal primary productivity in Sri Lanka. Hydrobiologia 150: 165–175.CrossRefGoogle Scholar
  57. Singh, S. P., 1981. Physico-chemical characteristics and macrophytes of ‘Naukuchiya Tal’, a mid altitude lake of Kumaun Himalaya (India). Trop Ecol. 22: 40–53.Google Scholar
  58. Singh, R. K., 1985. Limnological observations on Rihand Reservoir (Uttar Pradesh) with reference to the physical and chemical parameters of its water. Int. Revue ges. Hydrobiol. 70: 857–875.Google Scholar
  59. Smith, V. H., 1982. The nitrogen and phosphorus dependence of algal biomass in lakes: An empirical and theoretical analysis. Limnol. Oceanogr. 27: 1101–1112.Google Scholar
  60. Smith, V. H. & J. Shapiro, 1981. Chlorophyll-phosphorus relations in individual lakes. Their importance to lake restoration strategies. Envir. Sci. Technol. 15: 444–451.Google Scholar
  61. Sreenivasan, A., 1965. Limnology of tropical impoundments III. Limnology and productivity of Amaravathy reservoir (Madras state), India. Hydrobiologia 26: 501–516.CrossRefGoogle Scholar
  62. Sreenivasan, A., 1970. Energy transformations through primary productivity and fish production in some tropical freshwater impoundments and ponds. In: Kajak, Z. and Hillbricht-Ilkowska, A. (eds.) Productivity Problems of Freshwaters, pp. 505–514. Warszawa/Krakow.Google Scholar
  63. Sreenivasan, A., 1976. Limnological studies of primary production in temple pond ecosystems. Hydrobiologia 48: 117–123.CrossRefGoogle Scholar
  64. Straskraba, M., 1980. The effects of physical variables on freshwater production: Analyses based on models. Chapter 3. In: E. D. LeCren and R. H. Lowe-McConnell (eds.). The functioning of freshwater ecosystems, International Biological Programme 22. pp. 13–84. Cambridge Univ. Press, Cambridge.Google Scholar
  65. Swar, D. B., 1980. Present status of limnological studies and research in Nepal. In: Mori, S. and Ikusima, I. (eds.) Proceedings of the First Workshop on the Promotion of Limnology in the Developing Countries, pp. 43–47 Organizing Committee XXI SIL Congress, Kyoto, Japan.Google Scholar
  66. Swar, D. B., 1981. Seasonal abundance of limnetic crustacean zooplankton in Lake Phewa, Pokhara Valley, Nepal. Verh. int. Ver. Limnol. 21: 535–538.Google Scholar
  67. Swar, D. B. & C. H. Fernando, 1979a. Seasonality and fecundity ofDaphnia lumboltzi Sars in Lake Phewa, Nepal. Hydrobiologia 64: 261–268.CrossRefGoogle Scholar
  68. Swar, D. B. & C. H. Fernando, 1979b. Cladocera from Pokhara Valley, Nepal, with notes on distribution. Hydrobiologia 66: 113–128.CrossRefGoogle Scholar
  69. Swar, D. B. & C. H. Fernando, 1980. Some studies on the ecology of limnetic crustacean zooplankton in Lake Begnas and Rupa, Pokhara Valley, Nepal. Hydrobiologia 70: 235–245.CrossRefGoogle Scholar
  70. Swarzenski, W. V. & H. M. Babcock, 1968. Ground-water resources investigations program for the western Terai, Nepal. Administrative Report. U.S. Geological Survey. Washington D.C.Google Scholar
  71. Uhlmann, D. J. Benndorf & H. Pankow, 1982. A note on thermal and oxygen stratification and phytoplankton composition in some reservoirs in Tamil Nadu and Kerala, India. Int. Revue ges. Hydrobiol. 67: 63–84.Google Scholar
  72. Unni, K. S., 1985. Comparative limnology of several reservoirs in central India. Int. Revue ges. Hydrobiol. 70: 845–856.Google Scholar
  73. Vass, K. K. & D. P. Zutshi, 1983. Energy flow, trophic evolution and ecosystem management of a Kashmir Himalayan lake. Arch. Hydrobiol. 97: 39–59.Google Scholar
  74. Vollenweider, R. A. & J. J. Kerekes, 1980. Background and summary results of the OECD Cooperation Program on Eutrophication. In Restoration of Lakes and Inland Waters, U.S. EPA 400/5–81–010: 25–36.Google Scholar
  75. Wetzel, R. G., 1983. Limnology (2nd ed.). Saunders College Publishing, Philadelphia. 767 pp.Google Scholar
  76. White, D. E., J. D. Hem & G. A. Waring, 1963. Chemical composition of subsurface waters. In Data of Geochemistry, Chapter F. 6th ed. Geological Survey Professional Paper 440-F, Fleischer, M. (Tech. ed.) U.S. Gov. Print Office. Washington, D.C.: pp. F1-F27.Google Scholar
  77. White, E., K. Law, G. Payne & S. Pickmere, 1985. Nutrient demand and availability among planktonic communities — an attempt to assess nutrient limitation to plant growth in 12 central volcanic plateau lakes. New Zealand J. Mar. Freshwat. Res. 19: 49–62.Google Scholar
  78. Zutshi, D. P., B. A. Subla, M. A. Khan & A. Wanganeo, 1980. Comparative limnology of nine lakes of Jammu and Kashmir Himalayas. Hydrobiologia 72: 101–112.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • John R. Jones
    • 1
    • 2
  • Matthew F. Knowlton
    • 1
    • 2
  • Deep B. Swar
    • 1
    • 2
  1. 1.School of Forestry, Fisheries and Wildlife, University of Missouri-ColumbiaColumbiaUSA
  2. 2.Department of AgricultureFishery Development CentrePokharaNepal

Personalised recommendations