Acta Mathematica

, Volume 180, Issue 2, pp 145–186 | Cite as

Cut points and canonical splittings of hyperbolic groups

  • Brian H. Bowditch
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AN]Adeleke, S. A. &Neumann, P. M.,Relations Related to Betweenness: Their Structure and Automorphisms. Mem. Amer. Math. Soc., 623. Amer. Math. Soc., Providence, RI, 1998.Google Scholar
  2. [BM]Bestvina, M. &Mess, G., The boundary of negatively curved groups.J. Amer. Math. Soc., 4 (1991), 469–481.CrossRefMathSciNetGoogle Scholar
  3. [Bo1]Bowditch, B. H.,Treelike Structures Arising from Continua and Convergence Groups. To appear in Mem. Amer. Math. Soc.Google Scholar
  4. [Bo2]Bowditch, B. H., Group actions on trees and dendrons. To appear inTopology.Google Scholar
  5. [Bo3]Bowditch, B. H., Boundaries of strongly accessible hyperbolic groups. Preprint, Melbourne, 1996.Google Scholar
  6. [Bo4]Bowditch, B. H., Convergence groups and configuration spaces. To appear inGroup Theory Down Under (J. Cossey, C. F. Miller, W. D. Neumann and M. Shapiro, eds.), de Gruyter.Google Scholar
  7. [Bo5]Bowditch, B. H., Connectedness properties of limit sets. To appear inTrans. Amer. Math. Soc. Google Scholar
  8. [Bo6]Bowditch, B. H., A topological characterisation of hyperbolic groups. To appear inJ. Amer. Math. Soc. Google Scholar
  9. [CJ]Casson, A. &Jungreis, D., Convergence groups and Seifert fibered 3-manifolds.Invent. Math., 118 (1994), 441–456.CrossRefMathSciNetGoogle Scholar
  10. [DD]Dicks, W. &Dunwoody, M. J.,Groups Acting on Graphs. Cambridge Stud. Adv. Math., 17. Cambridge Univ. Press, Cambridge-New York, 1989.Google Scholar
  11. [DP]Delzant, T. &Potyagailo, L., Accessibilité hiérarchique des groupes de présentation finie. Preprint, Strasbourg/Lille, 1998.Google Scholar
  12. [DSa]Dunwoody, M. J. & Sageev, M. E., JSJ-splittings for finitely presented groups over slender subgroups. To appear inInvent. Math. Google Scholar
  13. [DSw]Dunwoody, M. J. & Swenson, E. L. The algebraic annulus theorem. Preprint, Southampton, 1996.Google Scholar
  14. [Du]Dunwoody, M. J., The accessibility of finitely presented groups.Invent. Math., 81 (1985), 449–457.CrossRefMATHMathSciNetGoogle Scholar
  15. [FP]Fujiwara, K. & Papasoglu, P., JSJ decompositions of finitely presented groups and complexes of groups. Preprint, 1997.Google Scholar
  16. [Fr]Freden, E. M., Negatively curved groups have the convergence property.Ann. Acad. Sci. Fenn. Ser. A I Math., 20 (1995), 333–348.MATHMathSciNetGoogle Scholar
  17. [Ga]Gabai, D., Convergence groups are Fuchsian groups.Ann. of Math., 136 (1992), 447–510.CrossRefMATHMathSciNetGoogle Scholar
  18. [GH]Ghys, E. &Harpe, P. de la,Sur les groupes hyperboliques d'après Mikhael Gromov. Progr. Math., 83. Birkhäuser, Boston, MA, 1990.Google Scholar
  19. [GM1]Gehring, F. W. &Martin, G. J., Discrete quasiconformal groups, I.Proc. London Math. Soc., 55 (1987), 331–358.MathSciNetGoogle Scholar
  20. [GM2]Gehring, F. W. & Martin, G. J., Discrete quasiconformal groups, II. Handwritten notes.Google Scholar
  21. [Gr]Gromov, M., Hyperbolic groups, inEssays in Group Theory (S. M. Gersten, ed.), pp. 75–263. Math. Sci. Res. Inst. Publ., 8. Springer-Verlag, New York-Berlin, 1987.Google Scholar
  22. [Gu]Guralnik, D. P., Constructing a splitting-tree for a cusp-finite group acting on a Peano continuum (Hebrew). M.Sc. Dissertation, Technion, Haifa, 1998.Google Scholar
  23. [HY]Hocking, J. G. &Young, G. S.,Topology. Addison-Wesley, Reading, MA, 1961.Google Scholar
  24. [Jo]Johannson, K.,Homotopy Equivalences of 3-Manifolds with Boundaries. Lecture Notes in Math., 761. Springer-Verlag, Berlin-New York, 1979.Google Scholar
  25. [JS]Jaco, W. H. &Shalen, P. B.,Seifert Fibered Spaces in 3-Manifolds. Mem. Amer. Math. Soc., 220. Amer. Math. Soc., Providence, RI, 1979.Google Scholar
  26. [K]Kropholler, P. H., A group-theoretic proof of the torus theorem, inGeometric Group Theory, Vol. 1 (Sussex, 1991), pp. 138–158. London Math. Soc. Lecture Note Ser., 181. Cambridge Univ. Press, Cambridge, 1993.Google Scholar
  27. [L]Levitt, G., Non-nesting actions on real trees.Bull. London Math. Soc., 30 (1998), 46–54.CrossRefMATHMathSciNetGoogle Scholar
  28. [MNS]Miller III, C. F., Neumann, W. D. & Swarup, G. A., Some examples of hyperbolic groups. To appear inGroup Theory Down Under (J. Cossey, C. F. Miller, W. D. Neumann and M. Shapiro, eds.), de Gruyter.Google Scholar
  29. [P]Paulin, F., Outer automorphisms of hyperbolic groups and small actions onR-trees, inArboreal Group Theory (Berkeley, CA, 1988), pp. 331–343. Math. Sci. Res. Inst. Publ., 19. Springer-Verlag, New York, 1991.Google Scholar
  30. [RS]Rips, E. &Sela, Z., Cyclic splittings of finitely presented groups and the canonical JSJ decomposition.Ann. of Math., 146 (1997), 53–109.CrossRefMathSciNetGoogle Scholar
  31. [Se]Sela, Z., Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups, II.Geom. Funct. Anal., 7 (1997), 561–593.CrossRefMATHMathSciNetGoogle Scholar
  32. [Sha]Shalen, P. B., Dendrology and its applications, inGroup Theory from a Geometrical Viewpoint (Trieste, 1990), pp. 543–616. World Sci. Publishing, River Edge, NJ, 1991.Google Scholar
  33. [Sho]Short, H., Quasiconvexity and a theorem of Howson's, inGroup Theory from a Geometrical Viewpoint (Trieste, 1990), pp. 168–176. World Sci. Publishing, River Edge, NJ, 1991.Google Scholar
  34. [SS]Scott, P. & Swarup, G. A., An algebraic annulus theorem. Preprint.Google Scholar
  35. [St]Stallings, J. R.,Group Theory and Three-Dimensional Manifolds. Yale Math. Monographs, 4. Yale Univ. Press, New Haven, 1971.Google Scholar
  36. [Sw]Swarup, G. A., On the cut point conjecture.Electron. Res. Announc. Amer. Math. Soc., 2 (1996), 98–100 (electronic).CrossRefMATHMathSciNetGoogle Scholar
  37. [T1]Tukia, P., Homeomorphic conjugates of Fuchsian groups.J. Reine Angew. Math., 391 (1988), 1–54.MATHMathSciNetGoogle Scholar
  38. [T2] —, Convergence groups and Gromov's metric hyperbolic spaces.New Zealand J. Math., 23 (1994), 157–187.MATHMathSciNetGoogle Scholar
  39. [W]Ward, L. E., Axioms for cutpoints, inGeneral Topology and Modern Analysis (Univ. of California, Riverside, CA, 1980), pp. 327–336. Academic Press, New York-London, 1981.Google Scholar

Copyright information

© Institut Mittag-Leffler 1998

Authors and Affiliations

  • Brian H. Bowditch
    • 1
  1. 1.Faculty of Mathematical StudiesUniversity of SouthamptonSouthamptonEngland, UK

Personalised recommendations