Advertisement

Acta Mathematica

, Volume 180, Issue 2, pp 145–186 | Cite as

Cut points and canonical splittings of hyperbolic groups

  • Brian H. Bowditch
Article

Keywords

Hyperbolic Group Canonical Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AN]Adeleke, S. A. &Neumann, P. M.,Relations Related to Betweenness: Their Structure and Automorphisms. Mem. Amer. Math. Soc., 623. Amer. Math. Soc., Providence, RI, 1998.Google Scholar
  2. [BM]Bestvina, M. &Mess, G., The boundary of negatively curved groups.J. Amer. Math. Soc., 4 (1991), 469–481.CrossRefMathSciNetGoogle Scholar
  3. [Bo1]Bowditch, B. H.,Treelike Structures Arising from Continua and Convergence Groups. To appear in Mem. Amer. Math. Soc.Google Scholar
  4. [Bo2]Bowditch, B. H., Group actions on trees and dendrons. To appear inTopology.Google Scholar
  5. [Bo3]Bowditch, B. H., Boundaries of strongly accessible hyperbolic groups. Preprint, Melbourne, 1996.Google Scholar
  6. [Bo4]Bowditch, B. H., Convergence groups and configuration spaces. To appear inGroup Theory Down Under (J. Cossey, C. F. Miller, W. D. Neumann and M. Shapiro, eds.), de Gruyter.Google Scholar
  7. [Bo5]Bowditch, B. H., Connectedness properties of limit sets. To appear inTrans. Amer. Math. Soc. Google Scholar
  8. [Bo6]Bowditch, B. H., A topological characterisation of hyperbolic groups. To appear inJ. Amer. Math. Soc. Google Scholar
  9. [CJ]Casson, A. &Jungreis, D., Convergence groups and Seifert fibered 3-manifolds.Invent. Math., 118 (1994), 441–456.CrossRefMathSciNetGoogle Scholar
  10. [DD]Dicks, W. &Dunwoody, M. J.,Groups Acting on Graphs. Cambridge Stud. Adv. Math., 17. Cambridge Univ. Press, Cambridge-New York, 1989.Google Scholar
  11. [DP]Delzant, T. &Potyagailo, L., Accessibilité hiérarchique des groupes de présentation finie. Preprint, Strasbourg/Lille, 1998.Google Scholar
  12. [DSa]Dunwoody, M. J. & Sageev, M. E., JSJ-splittings for finitely presented groups over slender subgroups. To appear inInvent. Math. Google Scholar
  13. [DSw]Dunwoody, M. J. & Swenson, E. L. The algebraic annulus theorem. Preprint, Southampton, 1996.Google Scholar
  14. [Du]Dunwoody, M. J., The accessibility of finitely presented groups.Invent. Math., 81 (1985), 449–457.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [FP]Fujiwara, K. & Papasoglu, P., JSJ decompositions of finitely presented groups and complexes of groups. Preprint, 1997.Google Scholar
  16. [Fr]Freden, E. M., Negatively curved groups have the convergence property.Ann. Acad. Sci. Fenn. Ser. A I Math., 20 (1995), 333–348.zbMATHMathSciNetGoogle Scholar
  17. [Ga]Gabai, D., Convergence groups are Fuchsian groups.Ann. of Math., 136 (1992), 447–510.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [GH]Ghys, E. &Harpe, P. de la,Sur les groupes hyperboliques d'après Mikhael Gromov. Progr. Math., 83. Birkhäuser, Boston, MA, 1990.Google Scholar
  19. [GM1]Gehring, F. W. &Martin, G. J., Discrete quasiconformal groups, I.Proc. London Math. Soc., 55 (1987), 331–358.MathSciNetGoogle Scholar
  20. [GM2]Gehring, F. W. & Martin, G. J., Discrete quasiconformal groups, II. Handwritten notes.Google Scholar
  21. [Gr]Gromov, M., Hyperbolic groups, inEssays in Group Theory (S. M. Gersten, ed.), pp. 75–263. Math. Sci. Res. Inst. Publ., 8. Springer-Verlag, New York-Berlin, 1987.Google Scholar
  22. [Gu]Guralnik, D. P., Constructing a splitting-tree for a cusp-finite group acting on a Peano continuum (Hebrew). M.Sc. Dissertation, Technion, Haifa, 1998.Google Scholar
  23. [HY]Hocking, J. G. &Young, G. S.,Topology. Addison-Wesley, Reading, MA, 1961.Google Scholar
  24. [Jo]Johannson, K.,Homotopy Equivalences of 3-Manifolds with Boundaries. Lecture Notes in Math., 761. Springer-Verlag, Berlin-New York, 1979.Google Scholar
  25. [JS]Jaco, W. H. &Shalen, P. B.,Seifert Fibered Spaces in 3-Manifolds. Mem. Amer. Math. Soc., 220. Amer. Math. Soc., Providence, RI, 1979.Google Scholar
  26. [K]Kropholler, P. H., A group-theoretic proof of the torus theorem, inGeometric Group Theory, Vol. 1 (Sussex, 1991), pp. 138–158. London Math. Soc. Lecture Note Ser., 181. Cambridge Univ. Press, Cambridge, 1993.Google Scholar
  27. [L]Levitt, G., Non-nesting actions on real trees.Bull. London Math. Soc., 30 (1998), 46–54.CrossRefzbMATHMathSciNetGoogle Scholar
  28. [MNS]Miller III, C. F., Neumann, W. D. & Swarup, G. A., Some examples of hyperbolic groups. To appear inGroup Theory Down Under (J. Cossey, C. F. Miller, W. D. Neumann and M. Shapiro, eds.), de Gruyter.Google Scholar
  29. [P]Paulin, F., Outer automorphisms of hyperbolic groups and small actions onR-trees, inArboreal Group Theory (Berkeley, CA, 1988), pp. 331–343. Math. Sci. Res. Inst. Publ., 19. Springer-Verlag, New York, 1991.Google Scholar
  30. [RS]Rips, E. &Sela, Z., Cyclic splittings of finitely presented groups and the canonical JSJ decomposition.Ann. of Math., 146 (1997), 53–109.CrossRefMathSciNetGoogle Scholar
  31. [Se]Sela, Z., Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups, II.Geom. Funct. Anal., 7 (1997), 561–593.CrossRefzbMATHMathSciNetGoogle Scholar
  32. [Sha]Shalen, P. B., Dendrology and its applications, inGroup Theory from a Geometrical Viewpoint (Trieste, 1990), pp. 543–616. World Sci. Publishing, River Edge, NJ, 1991.Google Scholar
  33. [Sho]Short, H., Quasiconvexity and a theorem of Howson's, inGroup Theory from a Geometrical Viewpoint (Trieste, 1990), pp. 168–176. World Sci. Publishing, River Edge, NJ, 1991.Google Scholar
  34. [SS]Scott, P. & Swarup, G. A., An algebraic annulus theorem. Preprint.Google Scholar
  35. [St]Stallings, J. R.,Group Theory and Three-Dimensional Manifolds. Yale Math. Monographs, 4. Yale Univ. Press, New Haven, 1971.Google Scholar
  36. [Sw]Swarup, G. A., On the cut point conjecture.Electron. Res. Announc. Amer. Math. Soc., 2 (1996), 98–100 (electronic).CrossRefzbMATHMathSciNetGoogle Scholar
  37. [T1]Tukia, P., Homeomorphic conjugates of Fuchsian groups.J. Reine Angew. Math., 391 (1988), 1–54.zbMATHMathSciNetGoogle Scholar
  38. [T2] —, Convergence groups and Gromov's metric hyperbolic spaces.New Zealand J. Math., 23 (1994), 157–187.zbMATHMathSciNetGoogle Scholar
  39. [W]Ward, L. E., Axioms for cutpoints, inGeneral Topology and Modern Analysis (Univ. of California, Riverside, CA, 1980), pp. 327–336. Academic Press, New York-London, 1981.Google Scholar

Copyright information

© Institut Mittag-Leffler 1998

Authors and Affiliations

  • Brian H. Bowditch
    • 1
  1. 1.Faculty of Mathematical StudiesUniversity of SouthamptonSouthamptonEngland, UK

Personalised recommendations