Acta Mathematica

, Volume 180, Issue 1, pp 1–29

Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel

  • Nicolas Burq
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [FL]Fernandez, C. &Lavine, R., Lower bounds for resonance width in potential and obstacle scattering.Comm. Math. Phys., 128 (1990), 263–284.CrossRefMathSciNetGoogle Scholar
  2. [G]Gérard, C., Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes.Mém. Soc. Math. France (N.S.), 31 (1988), 1–146.MATHGoogle Scholar
  3. [I1]Ikawa M., Decay of solutions of the wave equation in the exterior of several convex bodies.Ann. Inst. Fourier (Grenoble) 38 (1988), 113–146.MATHMathSciNetGoogle Scholar
  4. [I2] — Decay of solutions of the wave equation in the exterior of two convex bodies.Osaka J. Math. 19 (1982), 459–509.MATHMathSciNetGoogle Scholar
  5. [I3] —, Trapping obstacles, with a sequence of poles converging to the real axis.Osaka J. Math., 22 (1985), 657–689.MATHMathSciNetGoogle Scholar
  6. [I4] —, On the poles of the scattering matrix for two strictly convex obstacles.J. Math. Kyoto Univ., 23 (1983), 127–194.MATHMathSciNetGoogle Scholar
  7. [Le]Lebeau, G., Equation des ondes amorties, dansAlgebraic and Geometric Methods in Mathematical Physics (Kaciveli, 1993), pp. 73–109. Kluwer Acad. Publ., Dordrecht, 1996.Google Scholar
  8. [LP1]Lax, P. D., &Phillips, R. S., The acoustic equation with an indefinite energy form and the Schrödinger equation.J. Funct. Anal. 1 (1967), 37–83.CrossRefMathSciNetGoogle Scholar
  9. [LP2] —Scattering Theory, 2e édition. Pure Appl. Math., 26. Academic Press, Boston, MA, 1989.Google Scholar
  10. [LR1]Lebeau, G. &Robbiano, L., Contrôle exact de l'équation de la chaleur.Comm. Partial Differential Equations, 20 (1995), 335–356.MathSciNetGoogle Scholar
  11. [LR2]Lebeau, G. & Robbiano, L., Stabilisation de l'équation des ondes, par le bord. Prépublication de l'université de Paris-Sud 95-40, 1995.Google Scholar
  12. [Mi]Milnor, J.,Lectures on the h-Cobordism Theorem, Princeton Univ. Press, Princeton, NJ, 1965.Google Scholar
  13. [Mo1]Morawetz, C. S., The decay of solutions of the exterior initial-boundary value problem for the wave equation.Comm. Pure Appl. Math., 14 (1961), 561–568.MATHMathSciNetGoogle Scholar
  14. [Mo2] —, Decay of solutions of the exterior problem for the wave equation.Comm. Pure Appl. Math., 28 (1975), 229–264.MATHMathSciNetGoogle Scholar
  15. [MS]Melrose, R. B. &Sjöstrand, J., Singularities of boundary value problems I.Comm. Pure Appl. Math., 31 (1978), 593–617.MathSciNetGoogle Scholar
  16. [N]Nédélec, J. C., Quelques propriétés, logarithmiques des fonctions, de Hankel.C. R. Acad. Sci. Paris Sér. I. Math., 314 (1992), 507–510.MATHGoogle Scholar
  17. [Ra1]Ralston, J. V., Solutions of the wave equation with localized energy.Comm. Pure Appl. Math. 22 (1969), 807–823.MATHMathSciNetGoogle Scholar
  18. [Ra2] —, Trapped rays in spherically symmetric media and poles of the scattering matrix.Comm. Pure Appl. Math., 24 (1971), 571–582.MATHMathSciNetGoogle Scholar
  19. [RS]Reed, M. &Simon, B.,Methods of Modern Mathematical Physics, Volumes I–IV. Academic Press, New York-London, 1972–1979.Google Scholar
  20. [Va]Vainberg, B. R.,Asymptotic Methods in Equations of Mathematical Physics, Gordon & Breach, New York, 1989.Google Scholar
  21. [Vo]Vodev, G., Sharp bounds on the number of scattering poles in even-dimensional spaces.Duke Math. J., 74 (1994), 1–17.CrossRefMATHMathSciNetGoogle Scholar
  22. [Wal]Walker, H. F., Some remarks on the local energy decay of solutions of the initialboundary value problem for the wave equation in unbounded domains.J. Differential Equations, 23 (1977), 459–471.CrossRefMATHMathSciNetGoogle Scholar
  23. [Wat]Watson, G. N.,A Treatise on the Theory of Bessel Functions, 2e édition. Cambridge Univ. Press, Cambridge, 1944.Google Scholar

Copyright information

© Institut Mittag-Leffler 1998

Authors and Affiliations

  • Nicolas Burq
    • 1
  1. 1.Centre de MathématiquesU.R.A. 169 du C.N.R.S. École PolytechniquePalaiseau CedexFrance

Personalised recommendations