Acta Mathematica

, Volume 189, Issue 2, pp 287–305 | Cite as

On the complexity of the classification problem for torsion-free abelian groups of rank two

  • Simon Thomas


Abelian Group Classification Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Adams, S. R. &Kechris, A. S., Linear algebraic groups and countable Borel equivalence relations.J. Amer. Math. Soc., 13 (2000), 909–943.CrossRefMathSciNetzbMATHGoogle Scholar
  2. [2]
    Adams, S. R. &Spatzier, R. J., Kazhdan groups, cocycles and trees.Amer. J. Math., 112 (1990), 271–287.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Baer, R., Abelian groups without elements of finite order.Duke Math. J., 3 (1937), 68–122.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    Connes, A., Feldman, J. &Weiss, B., An amenable equivalence relation is generated by a single transformation.Ergodic Theory Dynam. Systems, 1 (1981), 431–450.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Dougherty, R., Jackson, S. &Kechris, A. S., The structure of hyperfinite Borel equivalence relations.Trans. Amer. Math. Soc., 341 (1994), 193–225.CrossRefMathSciNetzbMATHGoogle Scholar
  6. [6]
    Feldman, J. &Moore, C. C., Ergodic equivalence relations, cohomology and von Neumann algebras, I.Trans. Amer. Math. Soc., 234 (1977), 289–324.CrossRefMathSciNetzbMATHGoogle Scholar
  7. [7]
    Fuchs, L.,Infinite Abelian Groups, Vol. II. Pure Appl. Math., 36-II. Academic Press, New York-London, 1973.zbMATHGoogle Scholar
  8. [8]
    Hjorth, G., Around nonclassifiability for countable torsion-free abelian groups, inAbelian Groups and Modules (Dublin, 1998), pp. 269–292. Trends Math., Birkhäuser, Basel, 1999.Google Scholar
  9. [9]
    Hjorth, G. &Kechris, A. S., Borel equivalence relations and classifications of countable models.Ann. Pure Appl. Logic, 82 (1996), 221–272.CrossRefMathSciNetzbMATHGoogle Scholar
  10. [10]
    Jackson, S., Kechris, A. S. &Louveau, A., Countable Borel equivalence relations.J. Math. Log., 2 (2002), 1–80.CrossRefMathSciNetzbMATHGoogle Scholar
  11. [11]
    Kechris, A. S., Countable sections for locally compact group actions.Ergodic Theory Dynam. Systems, 12 (1992), 283–295.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    —, Amenable versus hyperfinite Borel equivalence relations.J. Symbolic Logic, 58 (1993), 894–907.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    —, On the classification problem for rank 2 torsion-free abelian groups.J. London Math. Soc. (2), 62 (2000), 437–450.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    Król, M.,The Automorphism Groups and Endomorphism Rings of Torsion-Free Abelian Groups of Rank Two. Dissertationes Math. (Rozprawy Mat.), 55. PWN, Warsaw, 1967.Google Scholar
  15. [15]
    Kurosh, A. G., Primitive torsionsfreie abelsche Gruppen vom endlichen Range.Ann. of Math. (2), 38 (1937), 175–203.CrossRefMathSciNetGoogle Scholar
  16. [16]
    Malcev, A. I., Torsion-free abelian groups of finite rank.Mat. Sb. (N.S.), 4 (1938), 45–68 (Russian).zbMATHGoogle Scholar
  17. [17]
    Margulis, G. A.,Discrete Subgroups of Semisimple Lie Groups. Ergeb. Math. Grenzgeb. (3), 17. Springer-Verlag, Berlin, 1991.zbMATHGoogle Scholar
  18. [18]
    Pierce, R. S.,Associative Algebras. Graduate Texts in Math., 88. Springer-Verlag, New York-Berlin, 1982.zbMATHGoogle Scholar
  19. [19]
    Rotman, J. J.,An Introduction to Homological Algebra. Pure Appl. Math., 85. Academic Press, New York-London, 1979.zbMATHGoogle Scholar
  20. [20]
    Serre, J.-P.,Arbres, amalgames, SL 2. Astérisque, 46. Soc. Math. France, Paris, 1977.Google Scholar
  21. [21]
    Thomas, S., The classification problem for torsion-free abelian groups of finite rank.J. Amer. Math. Soc., 16 (2003), 233–258.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    Thomas, S. &Velickovic, B., On the complexity of the isomorphism relation for finitely generated groups.J. Algebra, 217 (1999), 352–373.CrossRefMathSciNetzbMATHGoogle Scholar
  23. [23]
    —, On the complexity of the isomorphism relation for fields of finite transcendence degree.J. Pure Appl. Algebra, 159 (2001), 347–363.CrossRefMathSciNetzbMATHGoogle Scholar
  24. [24]
    Wagon, S.,The Banach-Tarski Paradox. Encyclopedia Math. Appl., 24. Cambridge Univ. Press, Cambridge, 1985.zbMATHGoogle Scholar
  25. [25]
    Zimmer, R.,Ergodic Theory and Semisimple Groups. Monographs Math., 81. Birkhäuser, Basel, 1984.zbMATHGoogle Scholar
  26. [26]
    —, Kazhdan groups acting on compact manifolds.Invent. Math., 75 (1984), 425–436.CrossRefzbMATHMathSciNetGoogle Scholar
  27. [27]
    —, Groups generating transversals to semisimple Lie group actions.Israel J. Math., 73 (1991), 151–159.zbMATHMathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 2002

Authors and Affiliations

  • Simon Thomas
    • 1
  1. 1.Department of MathematicsRutgers UniversityPiscatawayUSA

Personalised recommendations