Acta Mathematica

, Volume 162, Issue 1, pp 247–286 | Cite as

On the topology of spaces of holomorphic maps

  • Jens Gravesen


Riemann Surface Complex Manifold Principal Part Loop Group Trivial Bundle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Atiyah, M. F., Instantons in two and four dimensions,Comm. Math. Phys., 93 (1984), 437–451.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Dold, A. &Thom, R., Quasifaserung und Unendliche Symmetrische Producte,Ann. of Math., 67 (1958), 239–281.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Donaldson, S. K., Instantons and geometric invariant theory,Comm. Math. Phys., 93 (1984), 453–460.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Earle, C. J. &Eells, J., Fibre bundle description of Teichmüller theory,J. Differential Geom., 3 (1969), 19–43.MATHMathSciNetGoogle Scholar
  5. [5]
    Earle, C. J. &Schatz, A., Teichmüller theory for surfaces with boundary,J. Differential Geom., 4 (1970), 169–185.MATHMathSciNetGoogle Scholar
  6. [6]
    Farkas, H. M. &Kra, I.,Riemann surfaces. Springer Verlag, New York, 1980.MATHGoogle Scholar
  7. [7]
    Guest, M. A., Topology of the space of absolute minima of the energy functional,Amer. J. Math., 106 (1984), 21–42.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Hamilton, R. S., The inverse function theorem of Nash and Moser,Bull. Amer. Math. Soc., 7 (1982), 65–222.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Kirwan, F. C., On spaces of maps from Riemann surfaces to Grassmannians and application to the cohomology of moduli of vector bundles,Ark. Mat., 24 (1986), 221–275.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    McDuff, D., Configuration spaces of positive and negative particles,Topology, 14 (1975), 91–107.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    McDuff, D. &Segal, G., Homology fibrations and the “Group-completion” theorem.Invent. Math., 31 (1976), 279–284.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Pressley, A. &Segal, G.,Loop Groups. Clarendon Press, Oxford, 1986.MATHGoogle Scholar
  13. [13]
    Seeley, R. T., Extentions ofC -functions defined in a half space,Proc. Amer. Math. Soc., 15 (1964), 625–626.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    Segal, G., The topology of spaces of rational functions,Acta Math., 143 (1979), 39–72.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Wells, R. O.,Differential Analysis on Complex Manifolds. Springer Verlag, New York, 1980.MATHGoogle Scholar

Copyright information

© Almqvist & Wiksell 1989

Authors and Affiliations

  • Jens Gravesen
    • 1
  1. 1.IMFUFARoskilde University CentreRoskildeDenmark

Personalised recommendations