Advertisement

Acta Mathematica

, Volume 182, Issue 1, pp 105–142 | Cite as

Clique is hard to approximate withinn 1−ε

  • Johan Håstad
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Arora, S., Lund, C., Motwani, R., Sudan, M. & Szegedy, M., Proof verification and the hardness of approximation problems, in33rd Annual IEEE Symposium on Foundations of Computer Science (Pittsburgh, PA, 1992), pp. 14–23. To appear inJ. ACM.Google Scholar
  2. [2]
    Arora, S. &Safra, S., Probabilistic checking of proofs: a new characterization of NP.J. ACM, 45 (1998), 70–122.CrossRefMathSciNetzbMATHGoogle Scholar
  3. [3]
    Babai, L., Trading group theory for randomness, in17th Annual ACM Symposium on Theory of Computing (Providence, RI, 1985), pp. 420–429.Google Scholar
  4. [4]
    Babai, L., Fortnow, L., Levin, L. & Szegedy, M., Checking computations in polynomial time, in23rd Annual ACM Symposium on Theory of Computing (New Orleans, LA, 1991), pp. 21–31.Google Scholar
  5. [5]
    Babai, L., Fortnow, L. &Lund, C., Nondeterministic exponential time has two-prover interactive protocols.Comput. Complexity, 1 (1991), 3–40.CrossRefMathSciNetzbMATHGoogle Scholar
  6. [6]
    Bellare, M., Coppersmith, D., Håstad, J., Kiwi, M. &Sudan, M., Linearity testing in characteristic two.IEEE Trans. Inform. Theory, 42 (1996), 1781–1796.CrossRefMathSciNetzbMATHGoogle Scholar
  7. [7]
    Bellare, M., Goldreich, O. &Sudan, M., Free bits PCPs and nonapproximability—towards tight results.SIAM J. Comput., 27 (1998), 804–915.CrossRefMathSciNetzbMATHGoogle Scholar
  8. [8]
    Bellare, M., Goldwasser, S., Lund, C. & Russell, A., Efficient probabilistically checkable proofs and applications to approximation, in25th Annual ACM Symposium on Theory of Computing (San Diego, CA, 1993), pp. 294–304.Google Scholar
  9. [9]
    Bellare, M. & Sudan, M., Improved nonapproximability results, in26th Annual ACM Symposium on Theory of Computing (Montreal, 1994), pp. 184–193.Google Scholar
  10. [10]
    Ben-Or, M., Goldwasser, S., Kilian, J. & Wigderson, A., Multiprover interactive proofs. How to remove intractability, in20th Annual ACM Symposium on Theory of Computing (Chicago, IL, 1988), pp. 113–131.Google Scholar
  11. [11]
    Berman, P. &Schnitger, G., On the complexity of approximating the independent set problem.Inform. and Comput., 96 (1992), 77–94.CrossRefMathSciNetzbMATHGoogle Scholar
  12. [12]
    Boppana, R. &Halldórsson, M., Approximating maximum independent sets by excluding subgraphs.BIT, 32 (1992), 180–196.CrossRefMathSciNetzbMATHGoogle Scholar
  13. [13]
    Bourgain, J., Walsh subspaces ofLp-product spaces, inSeminaire d'analyse fonctionnelle (1979–1980), pp. 4.1–4.9. École Polytechnique, Palaiseau, 1980.Google Scholar
  14. [14]
    Cook, S. A., The complexity of theorem proving procedure, in3rd Annual ACM Symposium on Theory of Computing (1971), pp. 151–158.Google Scholar
  15. [15]
    Feige, U., A threshold of lnn for approximating set cover, in28th Annual ACM Symposium on Theory of Computing (Philadelphia, PA, 1996), pp. 314–318. To appear inJ. ACM.Google Scholar
  16. [16]
    Feige, U. &Goemans, M., Approximating the value of two-prover proof systems, with applications to MAX 2SAT and MAX DICUT, in3rd Israel Symposium on the Theory of Computing and Systems (Tel Aviv, 1995), pp. 182–189. IEEE Comput. Soc. Press, Los Alamitos, CA, 1995.Google Scholar
  17. [17]
    Feige, U., Goldwasser, S., Lovász, L., Safra, S. &Szegedy, M., Interactive proofs and the hardness of approximating cliques.J. ACM, 43 (1996), 268–292.CrossRefMathSciNetzbMATHGoogle Scholar
  18. [18]
    Feige, U. & Kilian, J., Two prover protocols—Low error at affordable rates, in26th Annual ACM Symposium on Theory of Computing (Montreal, 1994), pp. 172–183.Google Scholar
  19. [19]
    Feige, U., Zero-knowledge and the chromatic number, in11th Annual IEEE Conference on Computational Complexity (Philadelphia, PA, 1996), pp. 278–287.Google Scholar
  20. [20]
    Fortnow, L., Rompel, J. & Sipser, M., On the power of multi-prover interactive protocols, in3rd IEEE Symposium on Structure in Complexity Theory (1988), pp. 156–161.Google Scholar
  21. [21]
    Garey, M. R. &Johnson, D. S.,Computers and Intractability. A Guide to the Theory of NP-completeness. W. H. Freeman, San Fransisco, CA, 1979.zbMATHGoogle Scholar
  22. [22]
    Goemans, M. & Williamson, D., 878-approximation algorithms for Max-Cut and Max-2-SAT, in26th Annual ACM Symposium on Theory of Computing (Montreal, 1994), pp. 422–431.Google Scholar
  23. [23]
    Goldwasser, S., Micali, S. &Rackoff, C., The knowledge complexity of interactive proof systems.SIAM J. Comput., 18 (1989), 186–208.CrossRefMathSciNetzbMATHGoogle Scholar
  24. [24]
    Håstad, J., Testing of the long code and hardness for clique, in28th Annual ACM Symposium on Theory of Computing (Philadelphia, PA, 1996), pp. 11–19. ACM, New York, 1996.Google Scholar
  25. [25]
    —, Clique is hard to approximate withinn 1−ε in37th Annual IEEE Symposium on Foundations of Computer Science (Burlington, VT, 1996), pp. 627–636. IEEE Comput. Soc. Press, Les Alamitos, CA, 1996.Google Scholar
  26. [26]
    Håstad, J., Some optimal in-approximability results, in29th Annual ACM Symposium on Theory of Computing (1997), pp. 1–10.Google Scholar
  27. [27]
    Johnson, D. S., Approximation algorithms for combinatorial, problems.J. Comput. System Sci., 9 (1974), 256–278.zbMATHMathSciNetCrossRefGoogle Scholar
  28. [28]
    Lund, C., Fortnow, L., Karloff, H. &Nisan, N., Algebraic methods for interactive proof systems.J. ACM, 39 (1992), 859–868.CrossRefMathSciNetzbMATHGoogle Scholar
  29. [29]
    Motwani, R. &Raghavan, P.,Randomized Algorithms. Cambridge Univ. Press, Cambridge, 1995.zbMATHGoogle Scholar
  30. [30]
    Papadimitriou, C.,Computational Complexity. Addison-Wesley, Reading, MA, 1994.zbMATHGoogle Scholar
  31. [31]
    Papadimitriou, C. &Yannakakis, M. Optimization, approximation and complexity classes,J. Comput. System Sci., 43 (1991), 425–440.CrossRefMathSciNetzbMATHGoogle Scholar
  32. [32]
    Raz, R., A parallel repetition theorem.SIAM J. Comput. 27 (1998), 763–803.CrossRefzbMATHMathSciNetGoogle Scholar
  33. [33]
    Shamir, A., IP=PSPACE.J. ACM, 39 (1992), 869–877.CrossRefzbMATHMathSciNetGoogle Scholar
  34. [34]
    Zuckerman, D., On unapproximable versions of NP-complete problems.SIAM J. Comput., 25 (1996), 1293–1304.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1999

Authors and Affiliations

  • Johan Håstad
    • 1
  1. 1.Department of MathematicsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations