Acta Mathematica

, Volume 170, Issue 2, pp 255–273

Integers, without large prime factors, in arithmetic progressions, I

  • Andrew Granville
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Al]
    Alladi, K., Asymptotic estimates of sums involving the Moebius function II.Trans. Amer. Math. Soc., 272 (1982), 87–105.CrossRefMATHMathSciNetGoogle Scholar
  2. [BP]
    Balog, A. &Pomerance, C., The distribution of smooth numbers in arithmetic progressions.Proc. Amer. Math. Soc., 115 (1992), 33–43.CrossRefMathSciNetMATHGoogle Scholar
  3. [dB]
    de Bruijn, N. G., On the number of positive integers ≤x and free prime factors >y.Nederl. Acad. Wetensch. Proc. Ser. A, 54 (1951), 50–60 (=Indag. Math., 13 (1951), 50–60); II.Indag. Math., 28 (1966), 239–247.MATHMathSciNetGoogle Scholar
  4. [Bu]
    Buchstab, A. A., On those numbers in an arithmetic progression all prime factors of which are small in order of magnitude.Dokl. Akad. Nauk SSSR (N.S.), 67 (1949), 5–8.Google Scholar
  5. [Bg]
    Burgess, D. A., The distribution of quadratic residues and non-residues,Mathematika, 4 (1957), 106–112.MATHMathSciNetGoogle Scholar
  6. [Da]
    Davenport, H.,Multiplicative Number Theory. Springer-Verlag, New York, 1980 (2nd ed.).MATHGoogle Scholar
  7. [Db]
    Daboussi, H., Sur le Théorème des Nombres Premiers.C. R. Acad. Sci. Paris, 298 (1984), 161–164.MATHMathSciNetGoogle Scholar
  8. [Di]
    Dickman, K., On the frequency of numbers containing prime factors of a certain relative magnitude.Ark. Mat. Astr. Fys., 22 (1930), 1–14.Google Scholar
  9. [El]
    Elliott, P. D. T. A., Multiplicative functions on arithmetic progressions, II.Mathematika, 35 (1988), 38–50.MATHMathSciNetGoogle Scholar
  10. [FT]
    Fouvry, E. &Tenenbaum, G., Entiers sans grand facteur premier en progressions arithmétiques.Proc. London. Math. Soc., 63 (1991), 449–494.MathSciNetMATHGoogle Scholar
  11. [Fr]
    Friedlander, J. B., Integers without large prime factors, II.Acta Arith., 39 (1981), 53–57.MATHMathSciNetGoogle Scholar
  12. [Hr]
    Halberstam, H. &Richert, H.-E.,Sieve Methods. Academic Press, New York, 1974.MATHGoogle Scholar
  13. [HB]
    Heath-Brown, D. R., Primes in “almost all” short intervals.J. London Math. Soc., 26 (1982), 385–396.MATHMathSciNetGoogle Scholar
  14. [He]
    Hensley, D., A property of the counting function of integers with no large prime factors.J. Number Theory, 22 (1986), 46–74.CrossRefMATHMathSciNetGoogle Scholar
  15. [H1]
    Hildebrand, A., On the number of positive integers ≤x and free of large prime factors >y.J. Number. Theory, 22 (1986), 289–307.CrossRefMATHMathSciNetGoogle Scholar
  16. [H2]
    —, Integers free of large prime factors and the Riemann Hypothesis.Mathematika, 31 (1984), 258–271.MATHMathSciNetCrossRefGoogle Scholar
  17. [H3]
    —, On the number of prime factors of integers without large prime divisors.J. Number Theory, 25 (1987), 81–106.CrossRefMATHMathSciNetGoogle Scholar
  18. [H4]
    —, Multiplicative functions on arithmetic progressions.Proc. Amer. Math. Soc., 108 (1990), 307–318.CrossRefMATHMathSciNetGoogle Scholar
  19. [HT]
    Hildebrand, A. &Tenenbaum, G., On integers free of large prime factors.Trans. Amer. Math. Soc., 296 (1986), 265–290.CrossRefMathSciNetMATHGoogle Scholar
  20. [JR]
    Jurkat, W. B. &Richert, H.-E., An improvement of Selberg's sieve method I.Acta Arith., 11 (1965), 217–240.MathSciNetMATHGoogle Scholar
  21. [LF]
    Levin, B. V. &Fanleib, A. S., Application of some integral equations to problems in number theory.Uspekhi Mat. Nauk, 22(135) (1967), 119–197;Russian Math. Surveys, 22:3 (1967), 119–204.MATHGoogle Scholar
  22. [No]
    Norton, K. K.,Numbers with Small Prime Factors and the Least k-th Power Non-Residue. Mem. Amer. Math. Soc., 106, 1971.Google Scholar
  23. [Po]
    Pomerance, C., Analysis and comparison of some integer factoring algorithms, inComputational Methods in Number Theory (H. W. Lenstra Jr. and R. Tijdeman, eds.), pp. 89–139, 1984.Google Scholar
  24. [Ra]
    Rankin, R. A., The difference between consecutive prime numbers.J. London Math. Soc., 13 (1938), 242–247.MATHGoogle Scholar
  25. [Sa]
    Saias, E., Sur le nombre des entiers sans grand facteur premier.J. Number Theory, 32 (1989), 78–99.CrossRefMATHMathSciNetGoogle Scholar
  26. [Se]
    Selberg, A., An elementary proof of the prime number theorem for arithmetic progressions.Canad. J. Math., 2 (1950), 66–78.MATHMathSciNetGoogle Scholar
  27. [T1]
    Tenenbaum G., La méthode du col en théorie analytique des nombres, inSéminaire de Théorie des Nombres, Paris 1986–87, pp. 411–441. Birkhäuser, Boston.Google Scholar
  28. [T2]
    — Sur un problème d'Erdős et Alladi, inSéminaire de Théorie des Nombres, Paris 1988–89, pp. 221–239. Birkhäuser, Boston.Google Scholar
  29. [Va]
    Vaughan, R. C., A new iterative method in Waring's problem.Acta Math., 162 (1989), 1–71.MATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1993

Authors and Affiliations

  • Andrew Granville
    • 1
    • 2
  1. 1.Institute for Advanced StudyPrincetonUSA
  2. 2.Department of MathematicsUniversity of GeorgiaAthensUSA

Personalised recommendations