Acta Mathematica

, Volume 171, Issue 1, pp 73–138

On elliptic tempered characters

  • James Arthur
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Arthur, J., The characters of discrete series as orbital integrals.Invent. Math. 32 (1976), 205–261.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    —, The trace formula in invariant form.Ann. of Math., 114 (1981), 1–74.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    —, The characters of supercuspidal representations as weighted orbital integrals.Proc. Indian Acad. Sci. 97 (1987), 3–19.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    —, The invariant trace formula I. Local theory.J. Amer. Math. Soc., 1 (1988), 323–383.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    —, The invariant trace formula II. Global theory.J. Amer. Math. Soc., 1 (1988), 501–554.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    —, Intertwining operators and residues I. Weighted characters.J. Funct. Anal., 84 (1989), 19–84.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    —, Intertwining operators and residues II. Invariant distributions.Compositio Math., 70 (1989), 51–99.MATHMathSciNetGoogle Scholar
  8. [8]
    Arthur, J., Towards a local trace formula, inAlgebraic Analysis, Geometry and Number Theory, pp. 1–24. The Johns Hopkins University Press, 1989.Google Scholar
  9. [9]
    Arthur, J., Unipotent automorphic representations: Global motivation, inAutomorphic Forms, Shimura Varieties, and L-functions, Vol. I, pp. 1–75. Academic Press, 1990.Google Scholar
  10. [10]
    Arthur, J., Some problems in local harmonic analysis, inHarmonic Analysis on Reductive Groups (W. Barker and P. Sally, eds.), pp. 57–58. Birkhäuser, 1991.Google Scholar
  11. [11]
    —, A local trace formula.Inst. Hautes Études Sci. Publ. Math., 73 (1991), 5–96.MATHMathSciNetGoogle Scholar
  12. [12]
    Bernstein, J., Deligne, P. &Kazhdan, D., Trace Paley-Wiener theorem for reductivep-adic groups.J. Analyse Math., 47 (1986), 180–192.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    Clozel, L., Invariant harmonic analysis on the Schwartz space of a reductivep-adic group, inHarmonic Analysis on Reductive Groups (W. Barker and P. Sally, eds.), pp. 101–121. Birkhäuser, 1991.Google Scholar
  14. [14]
    Clozel, L. &Delorme, P., Le théorème de Paley-Wiener invariant pour les groupes de Lie reductif II.Ann. Sci. École Norm. Sup. (4), 23 (1990), 193–228.MathSciNetMATHGoogle Scholar
  15. [15]
    Casselman, W., Characters and Jacquet modules.Math. Ann., 230 (1977), 101–105.CrossRefMathSciNetGoogle Scholar
  16. [16]
    Curtis, C. & Reiner, I.,Representation Theory of Finite Groups and Associative Algebras. Interscience Publishers, 1962.Google Scholar
  17. [17]
    Harish-Chandra, A formula for semisimple Lie groups.Amer. J. Math., 79 (1957), 733–760.MathSciNetMATHGoogle Scholar
  18. [18]
    Harish-Chandra,Harmonic Analysis on Reductive p-adic Groups. Lecture Notes in Math., 162. Springer-Verlag, 1970.Google Scholar
  19. [19]
    —, Harmonic analysis on real reductive Groups II. Wave packets in the Schwartz space.Invent. Math., 36 (1976), 1–55.CrossRefMathSciNetMATHGoogle Scholar
  20. [20]
    —, Harmonic analysis on real reductive groups III. The Maass-Selberg relations and the Plancherel formula.Ann. of Math., 104 (1976), 117–201.CrossRefMathSciNetGoogle Scholar
  21. [21]
    Harish-Chandra, The Plancherel formula for reductivep-adic groups, inCollected Papers, Vol. IV, pp. 353–367. Springer-Verlag.Google Scholar
  22. [22]
    Harish-Chandra, Supertempered distributions on real reductive groups, inCollected Papers, Vol. IV, pp. 447–453. Springer-Verlag.Google Scholar
  23. [23]
    Hecht, H. &Schmid, W., Characters, asymptotics andn-homology of Harish-Chandra modules.Acta Math., 151 (1983), 49–151.MathSciNetMATHGoogle Scholar
  24. [24]
    Kazhdan, D., Cuspidal geometry onp-adic groups.J. Analyse Math., 47 (1986), 1–36.MATHMathSciNetGoogle Scholar
  25. [25]
    Keys, D.,L-indistinguishability andR-groups for quasi-split groups: Unitary groups of even dimension.Ann. Sci. École Norm. Sup. (4), 20 (1987), 31–64.MATHMathSciNetGoogle Scholar
  26. [26]
    Knapp, A. W., Commutativity of intertwining operators for semisimple groups.Compositio Math., 46 (1982), 33–84.MATHMathSciNetGoogle Scholar
  27. [27]
    Knapp, A. W. &Stein, E. M., Singular integrals and the principal series IV.Proc. Nat. Acad. Sci. U.S.A., 72 (1975), 2459–2461.MathSciNetMATHGoogle Scholar
  28. [28]
    —, Intertwining operators for semisimple groups II.Invent. Math., 60 (1980), 9–84.CrossRefMathSciNetMATHGoogle Scholar
  29. [29]
    Knapp, A. W. & Zuckerman, G., Normalizing factors, tempered representations, andL-groups, inAutomorphic Forms, Representations, and L-functions. Proc. Sympos. Pure Math., 33∶1 (1979), 93–105. Amer. Math. Soc., Providence.Google Scholar
  30. [30]
    Labesse, J.-P., Pseudo-coefficients très cuspidaux etK-théorie.Math. Ann., 291 (1991). 607–616.CrossRefMATHMathSciNetGoogle Scholar
  31. [31]
    Langlands, R. P.,On the Functional Equations Satisfied by Eisenstein Series. Lecture Notes in Math., 544. Springer-Verlag, 1976.Google Scholar
  32. [32]
    Langlands, R. P., Representations of real algebraic groups, inRepresentation Theory and Harmonic Analysis on Semisimple Lie Groups. Mathematical Surveys and Monographs, 31. Amer. Math. Soc., 1989.Google Scholar
  33. [33]
    Laumon, G., Letters to R. Kottwitz (Dec. 2, 1988; Dec. 7, 1988) and to J. Arthur (Feb. 24, 1989; Mar. 7, 1989).Google Scholar
  34. [34]
    Laumon, G., Cohomology with compact supports of Drinfeld modular varieties, Parts I and II. Preprints.Google Scholar
  35. [35]
    Shahidi, F., A proof of Langlands' conjecture on Plancherel measures: Complementary series forp-adic groups.Ann. of Math., 132 (1990), 273–330.CrossRefMATHMathSciNetGoogle Scholar
  36. [36]
    Silberger, A.,Introduction to Harmonic Analysis on Reductive p-adic Groups. Mathematical Notes, Princeton University Press, 1979.Google Scholar
  37. [37]
    —, The Knapp-Stein dimension theorem forp-adic groups.Proc. Amer. Math. Soc., 68 (1978), 243–246; Correction.Proc. Amer. Math. Soc., 76 (1979), 169–170.CrossRefMATHMathSciNetGoogle Scholar
  38. [38]
    Waldspurger, J.-L., Intégrales orbitales sphériques pourGL(N) sur un corpsp-adique.Astérisque, 171–172 (1989), 279–337.MathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1993

Authors and Affiliations

  • James Arthur
    • 1
  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations