Acta Mathematica

, Volume 164, Issue 1, pp 1–27 | Cite as

Homology of Euclidean groups of motions made discrete and Euclidean scissors congruences

  • Johan L. Dupont
  • Chih-Han Sah
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cartier, P., Décomposition des polyèdres: Le point sur le Troisième Problème de Hilbert.Seminaire N. Bourbaki, no. 646 (1984–85).Google Scholar
  2. [2]
    Cathelineau, J.-L., Remarques sur l'homologie deSO(n,R) considéré comme groupe discret.C. R. Acad. Sci. Paris Sér. I, 295 (1982), 281–283.MATHMathSciNetGoogle Scholar
  3. [3]
    —, Sur l'homologie deSL 2 a coefficients dans l'action adjointe.Math. Scand., 63 (1988), 51–86.MATHMathSciNetGoogle Scholar
  4. [4]
    Connes, A., Non commutative differential geometry.Inst. Hautes Études Sci. Publ. Math., 62 (1985), 41–144, 257–360.MATHGoogle Scholar
  5. [5]
    Dupont, J. L., Algebra of polytopes and homology of flag complexes.Osaka J. Math., 19 (1982), 599–641.MATHMathSciNetGoogle Scholar
  6. [6]
    Dupont, J. L., Parry, W. &Sah, C. H., Homology of classical Lie groups made discrete, II.H 2,H 3, and relations with scissors congruence.J. Algebra, 113 (1988), 215–260.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Dupont, J. L. &Sah, C. H., Scissors congruences, II.J. Pure Appl. Algebra, 25 (1982), 159–195.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Hochschild, G., Kostant, B. &Rosenberg, A., Differential forms on regular affine algebras.Trans. Amer. Math. Soc., 102 (1962), 383–408.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Jessen, B., The algebra of polyhedra and the Dehn-Sydler theorem.Math. Scand., 22 (1968), 241–256.MATHMathSciNetGoogle Scholar
  10. [10]
    —, Zur Algebra der Polytope.Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1972), 47–53.MATHMathSciNetGoogle Scholar
  11. [11]
    Jessen, B. &Thorup, A., The algebra of polytopes in affine spaces.Math. Scand., 43 (1978), 211–240.MATHMathSciNetGoogle Scholar
  12. [12]
    Karoubi, M.,K-théorie multiplicative et homologie cyclique.C. R. Acad. Sci. Paris Sér. I, 303 (1986), 507–510.MATHMathSciNetGoogle Scholar
  13. [13]
    Loday, J.-L. &Quillen, D., Cyclic homology and the Lie algebra homology of matrices.Commment. Math. Helv., 59 (1984), 565–591.MATHMathSciNetGoogle Scholar
  14. [14]
    MacLane, S.,Homology. Grundl. Math. Wiss. 114, SpringerVerlag, Berlin-Göttingen-Heidelberg, 1963.MATHGoogle Scholar
  15. [15]
    May, J. P.,Simplical Objects in Algebraic Topology. D. Van Nostrand Co., Toronto-London-Melbourne, 1967.Google Scholar
  16. [16]
    Sah, C. H.,Hilbert's Third Problem: Scissors Congruences. Res. Notes in Math. 33, Pitman, London, 1979.Google Scholar
  17. [17]
    —, Homology of classical Lie groups made discrete, I. Stability theorems and Schur multipliers,Comment. Math. Helv., 61 (1986), 308–347.MATHMathSciNetGoogle Scholar
  18. [18]
    —, Homology of classical Lie groups made discrete, III.J. Pure Appl. Algebra, 56 (1989), 269–312.MATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    Sydler, J. P., Conditions nécessaires et suffisantes pour l'équivalence des polyèdres de l'espace euclidien à trois dimensions.Comment. Math. Helv., 40 (1965), 43–80.MATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1990

Authors and Affiliations

  • Johan L. Dupont
    • 1
  • Chih-Han Sah
    • 2
  1. 1.Aarhus UniversityAarhus CDenmark
  2. 2.SUNY at Stony BrookNew YorkUSA

Personalised recommendations