Acta Mathematica

, Volume 179, Issue 2, pp 243–294 | Cite as

Fixed points and circle maps

  • Ricardo Pérez-Marco
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ah1]Ahlfors, L. V.,Lectures on Quasiconformal Mappings. Wadsworth & Brooks/Cole, Monterey, CA, 1987.Google Scholar
  2. [Ah2]—,Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill, New York-Düsseldorf-Johannesburg, 1973.Google Scholar
  3. [Ar1]Arnold, V. I., Small denominators I: Mapping the circle onto itself.Izv. Akad. Nauk. SSSR Ser. Mat., 25 (1961), 21–86; English translation inAmer. Math. Soc. Transl. Ser. 2, 46 (1965), 213–284.MATHMathSciNetGoogle Scholar
  4. [Ar2]—Chapitres supplémentaires de la théorie des équations différentielles ordinaires. “Mir” Moscow, 1980.Google Scholar
  5. [Bie]Bielefeld, B., Conformal dynamics problem list. Preprint, Stony Brook.Google Scholar
  6. [Bir]Birkhoff, G. D., Surface transformations and their dynamical applications.Acta Math., 43 (1922), 1–119; Also in:Collected Mathematical Papers, Vol. II, pp. 111–229.Google Scholar
  7. [Bo]Bost, J.-B., Tores invariants des systèmes dynamiques hamiltoniens, inSéminaire Bourbaki, vol. 1984/85, exp. no 639Astérisque, 133–134 (1986), 113–157.Google Scholar
  8. [Br]Brjuno, A. D., Analytical form of differential equations.Trans. Moscow Math. Soc., 25 (1971), 131–228; 26 (1972), 199–239.MathSciNetGoogle Scholar
  9. [Cam]Camacho, C., On the local structure of conformal mapping and holomorphic vector fields in C2.Astérisque, 59–60 (1978), 83–94.MathSciNetGoogle Scholar
  10. [Car]Cartan, H.,Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes. Hermann, Paris, 1961.Google Scholar
  11. [Ch]Cherry, T. M., A singular case of iteration of analytic functions: a contribution to the small divisors problem, inNon-linear Problems of Engineering (W. F. Ames, ed.), pp. 29–50. Academic Press, New York, 1964.Google Scholar
  12. [CLi]Carthwright, M. L. &Littlewood, J. E., Some fixed point theorems.Ann. of Math., 54 (1951), 1–37; Also in:Collected Papers of J. E. Littlewood, Vol. 1, pp. 38–74.CrossRefMathSciNetGoogle Scholar
  13. [CLo]Collingwood, E. F. &Lohwater, A. J.,The Theory of Cluster Sets. Cambridge Univ. Press. Cambridge, 1966.Google Scholar
  14. [Do1]Douady, A., Systemes dynamiques holomorphes, inSéminaire Bourbaki, vol. 1982/83, exp. no 599.Astérisque, 105–106 (1983), 39–63.Google Scholar
  15. [Do2]Douady, A. Disques de Siegel et anneaux de Herman, inSéminaire Bourbaki, vol. 1986/87, exp. no 677.Astérisque, 152–153 (1987), 151–172.Google Scholar
  16. [Du]Dulac, H., Recherches sur les points singuliers des équations différentielles.Journal de l'Ecole Polytechnique Sér. 2, 9 (1904), 1–125.Google Scholar
  17. [Ec]Ecalle, J., Les fonctions résurgentes et leurs applications. Publ. Math. Orsay, t. I, no 81-05; t II no 81-06; t. III, no 85-05.Google Scholar
  18. [Fa]Fatou, P., Sur les équations fonctionnelles.Bull. Math. France, 47 (1919), 161–271; 48 (1920), 33–94; 48 (1920), 208–314.MathSciNetGoogle Scholar
  19. [Ga]Garnett, J. B.,Applications of Harmonic Measure. University of Arkansas Lecture Notes in the Mathematical Sciences, 8, John Wiley & Sons, New York, 1986.Google Scholar
  20. [Gh]Ghys, E., Transformations holomorphes au voisinage d'une courbe de Jordan.C. R. Acad. Sci. Paris Sér. I Math., 298 (1984), 385–388.MATHMathSciNetGoogle Scholar
  21. [He1]Herman, M. R., Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations.Inst. Hautes Études Sci. Publ. Math., 49 (1979), 5–234.MATHMathSciNetGoogle Scholar
  22. [He2]—, Recent results and some open questions on Siegel's linearisation theorem of germs of complex analytic diffeomorphisms of Cn near a fixed point, inVIII th International Congress on Mathematical Physics (Marseille, 1986), pp. 138–184. World Sci. Publishing, Singapore, 1987.Google Scholar
  23. [He3]—, Are there critical points on the boundaries of singular domains?Comm. Math. Phys., 99 (1985), 593–612.CrossRefMATHMathSciNetGoogle Scholar
  24. [HY]Hocking, J. G. &Young, G. S.,Topology, 2nd edition, Dover, New York, 1988.Google Scholar
  25. [Ju]Julia, G., Mémoire sur la permutabilité des substitutions rationnelles.Ann. Sci. École Norm. Sup., 39 (1922), 131–215; Also in:Oeuvres, vol. I, pp. 335–419. Gauthier-Villars, Paris, 1968.MATHMathSciNetGoogle Scholar
  26. [KH]Katok, A. &Hasselblatt, B.,Introduction to the Modern Theory of Dynamical Systems. Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  27. [La]Lang, S.,Introduction to Diophantine Approximations. Addison-Wesley, Reading, MA-London-Don Mills, ON, 1966.Google Scholar
  28. [Le]Leau, L., Étude sur les equations fonctionnelles à une ou à plusieurs variables.Ann. Fac. Sci. Toulouse Math. Sér. I. 11 (1897), E.1-E.110.MATHMathSciNetGoogle Scholar
  29. [LV]Lehto, O. &Virtanen, K. I.,Quasiconformal Mappings in the Plane, 2nd edition. Grundlehren Math. Wiss., 126. Springer-Verlag, New York-Heidelberg, 1973.Google Scholar
  30. [Ma]Mather, J., Topological proofs of some purely topological consequences of Carathéodory's theory of prime ends inSelected Studies (Th. M. Rassias, ed.), pp. 225–255. North-Holland, Amsterdam-New York, 1982.Google Scholar
  31. [Mi]Milnor, J., Dynamics in one complex variable: Introductory lectures. Preprint, Stony Brook, 1990/5.Google Scholar
  32. [MM]Mattei, J.-F. &Moussu, R., Holonomie et intégrales premières.Ann Sci. École Norm Sup. (4), 13 (1980), 469–523.MathSciNetGoogle Scholar
  33. [Mo]Moser, J., On commuting circle mappings and simultaneous diophantine approximations.Math. Z., 205 (1990), 105–121.MATHMathSciNetGoogle Scholar
  34. [MR]Martinet, J. &Ramis, J.-P., Classification analytique des équations différentielles non linéaires résonnantes du premier ordre.Ann. Sci. École Norm. Sup. (4), 4 (1984), 571–621.MathSciNetGoogle Scholar
  35. [MZ]Montgomery, D. &Zippin, L.,Topological Transformation Groups. Krieger, Hungtinton, NY, 1974.Google Scholar
  36. [Na]Naishul, V. I., Topological invariants of analytic and area preserving mappings and their application to analytic differential equations in C2 and CP2.Trans. Moscow Math. Soc., 42 (1983), 239–250.Google Scholar
  37. [Ne]Newman, M. H. A.,Elements of the Topology of Plane Sets of Points. Dover, New York, 1992.Google Scholar
  38. [Oh]Ohtsuka, M.,Dirichlet Problem, Extremal Length and Prime-ends. Van Nostrand Reinhold, 1970.Google Scholar
  39. [Pe1]Pérez-Marco, R., Sur les dynamiques holomorphes non linéarisables et une conjecture de V. I. Arnold.Ann. Sci. École Norm. Sup. (4), 26 (1993), 565–644; See also: Sur la structure des germes holomorphes non linéarisables.C. R. Acad. Sci. Paris Sér. I. Math., 312 (1991), 533–536.MATHGoogle Scholar
  40. [Pe2]—, Non-linearizable holomorphic dynamics having an uncountable number of symmetries.Invent. Math., 119 (1995), 67–127; See also: Centralisateurs non dénombrables de germes de difféomorphismes holomorphes non linearisables de (C,0).C. R. Acad. Sci. Paris Sér. I Math., 313 (1991), 461–464.CrossRefMATHMathSciNetGoogle Scholar
  41. [Pe3]Pérez-Marco, R. Solution complète au problème de Siegel de linéarisation d'une application holomorphe au voisinage d'un point fixe (d'après J.-C. Yoccoz), inSéminaire Bourbaki, vol. 1991/92, exp. no 753.Astérisque, 206 (1992), 273–310.Google Scholar
  42. [Pe4]Pérez-Marco, R. Topology of Julia sets and hedgehogs. Preprint, Université de Paris-Sud, 94–48 (1994).Google Scholar
  43. [Pe5]Pérez-Marco, R. Holomorphic germs of quadratic type. To appear.Google Scholar
  44. [Pe6]Pérez-Marco, R. Hedgehogs dynamics. To appear; A partial account in: Sur une question de Dulac et Fatou.C. R. Acad. Sci. Paris Sér. I Math., 321 (1995), 1045–1048.Google Scholar
  45. [Pe7]Pérez-Marco, R. Classification dynamique des compacts pleins invariants par un difféomorphisme holomorphe. Manuscript, 1996.Google Scholar
  46. [Po]Pommerenke, Ch.,Boundary Behaviour of Conformal Maps. Grundlehren Math. Wiss., 299. Springer-Verlag, Berlin, 1992.Google Scholar
  47. [PY]Pérez-marco, R. & Yoccoz, J.-Ch., Germes de feuilletages holomorphes à holonomie prescrite, inComplex Analytic Methods in Dynamical Systems (Rio de Janeiro, 1992).Astérisque, 222 (1994), 345–371.Google Scholar
  48. [Ro]Rogers, J., Diophantine conditions imply critical points on the boundaries of Siegel disks of polynomials. Preprint, Tulane University.Google Scholar
  49. [Rü]Rüssmann, H., Kleine Nenner II: Bemerkungen zur Newtonschen Methode.Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl., II, 1972, 1–10.MATHGoogle Scholar
  50. [Sch]Schmidt, W. M.,Diophantine Approximation. Lecture Notes in Math., 785. Springer-Verlag, Berlin-New York, 1980.Google Scholar
  51. [Si]Siegel, C. L., Iterations of analytic functions.Ann. of Math., 43 (1942), 807–812.Google Scholar
  52. [SM]Siegel, C. L. &Moser, J.,Lectures on Celestial Mechanics. Grundlehren Math. Wiss., 187. Springer-Verlag, New York-Heidelberg, 1971.Google Scholar
  53. [Su]Sullivan, D., Conformal dynamical systems, inGeometric Dynamics (Rio de Janeiro, 1981) pp. 725–752. Lecture Notes in Math., 1007, Springer-Verlag, Berlin-New York, 1983.Google Scholar
  54. [Ts]Tsuji, M.,Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.Google Scholar
  55. [Vo]Voronin, S. M., Analytic classification of germs of conformal mappings (C,0)→(C,0) with identity linear part.Functional Anal. Appl., 15:1 (1981), 1–17.CrossRefMATHMathSciNetGoogle Scholar
  56. [Yo1]Yoccoz, J.-Ch., Centralisateurs et conjugaison différentiable des difféomorphismes du cercle. Thèse d'Etat, Université de Paris-Sud, 1985.Google Scholar
  57. [Yo2]—, Conjugation différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diphhantienne.Ann. Sci. École Norm. Sup., (4), 17 (1984), 333–359.MATHMathSciNetGoogle Scholar
  58. [Yo3]—, Theorème de Siegel, polynômes quadratiques et nombres de Brjuno.C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 55–58.MATHMathSciNetGoogle Scholar
  59. [Yo4]Yoccoz, J.-Ch., Conjugaison des difféomorphismes analytiques du cercle. Manuscript.Google Scholar
  60. [Yo5]—, An introduction to small divisors problems, inFrom Number Theory to Physics (Les Houches, 1989), pp. 659–679. Springer-Verlag, Berlin, 1992.Google Scholar

Copyright information

© Institut Mittag-Leffler 1997

Authors and Affiliations

  • Ricardo Pérez-Marco
    • 1
    • 2
  1. 1.C.N.R.S., U.R.A. 1169Université de Paris-SudOrsay CedexFrance
  2. 2.Department of MathematicsUniversity of CaliforniaLos AngelesU.S.A.

Personalised recommendations