Acta Mathematica

, Volume 179, Issue 2, pp 153–196 | Cite as

Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum

  • L. H. Eliasson


Point Spectrum Pure Point Pure Point Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Carmona, R. &Lacroix, J.,Spectral Theory of Random Schrödinger Operators, Birkhäuser, Boston, MA, 1990.Google Scholar
  2. [2]
    Chulaevsky, V. A. &Dinaburg, E. I. Methods of KAM-theory for long-range quasiperiodic operators onZ v. Pure point spectrum.Comm. Math. Phys. 153 (1993), 559–577.CrossRefMathSciNetGoogle Scholar
  3. [3]
    Coddington, E. A. &Levinson, N.,Theory of Ordinary Differential Equations, McGraw-Hill, New York-Toronto-London, 1955.Google Scholar
  4. [4]
    Eliasson, L. H., Floquet solutions for the one-dimensional quasi-periodic Schrödinger equation.Comm. Math. Phys., 146 (1992), 447–482.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    Folland, G. D.,Introduction to Partial Differential Equations. Princeton Univ. Press, Princeton, NJ, 1976.Google Scholar
  6. [6]
    Friedrichs, K. O.,Perturbation of Spectra in Hilbert Space. Amer. Math. Soc., Providence, RI, 1965.Google Scholar
  7. [7]
    Fröhlich, J., Spencer, T. &Wittver, P., Localization for a class of one-dimensional quasi-periodic Schrödinger operators.Comm. Math. Phys., 132 (1990), 5–25.CrossRefMathSciNetGoogle Scholar
  8. [8]
    Jitomirskaya, S. Ya., Anderson localization for the almost Matheiu, equation: a nonperturbative proof.Comm. Math. Phys., 165 (1994), 49–57.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    Jitomirskaya, S. &Simon, B., Operators with singular continuous spectrum, III: almost periodic Schrödinger operators.Comm. Math. Phys., 165 (1994), 201–205.CrossRefMathSciNetGoogle Scholar
  10. [10]
    Kato, T.,Perturbation Theory of Linear Operators. Second edition. Springer-Verlag, Berlin-New York, 1976.Google Scholar
  11. [11]
    MacDonald, I. G.,Symmetric Functions and Hall Polynomials. Clarendon Press, Oxford, 1979.Google Scholar
  12. [12]
    Pyartli, A. S., Diophantine approximation on submanifolds of Euclidean space.Functional Anal. Appl., 3 (1969), 303–306.CrossRefzbMATHGoogle Scholar
  13. [13]
    Rudin, W.,Real and Complex Analysis. McGraw-Hill, New York-Toronto-London, 1966.Google Scholar
  14. [14]
    Sinai, Ya. G., Anderson localization for the one-dimensional difference Schrödinger operator with a quasi-periodic potential.J. Statist. Phys., 46 (1987), 861–909.CrossRefMathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1997

Authors and Affiliations

  • L. H. Eliasson
    • 1
  1. 1.Department of MathematicsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations