Acta Mathematica

, Volume 163, Issue 1, pp 151–180

Solving the quintic by iteration

  • Peter Doyle
  • Curt McMullen
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abel, N. H., Beweis der Unmöglichkeit algebraische Gleichungen von höheren Graden als dem vierten allgemein aufzulösen.J. Reine Angew. Math., 1 (1826), 65–84.MATHGoogle Scholar
  2. [2]
    Dickson, L.,Modern Algebraic Theories. Benj. H. Sanborn & Co., 1930.Google Scholar
  3. [3]
    Douady, A. & Hubbard, J.,Étude dynamique des polynômes complexes. Publ. Math. d'Orsay, 1984.Google Scholar
  4. [4]
    Fricke, R.,Lehrbuch der Algebra, Vol. 2. Vieweg, 1926.Google Scholar
  5. [5]
    Green, M., On the analytic solution of the equation of fifth degree.Compositio Math., 37 (1978), 233–241.MATHMathSciNetGoogle Scholar
  6. [6]
    Grothendieck, A., Le groupe de Brauer I: Algèbres d'Azumaya et interpretations diverses.Séminaire Bourbaki, 290 (1965).Google Scholar
  7. [7]
    Grothendieck, A., Le groupe de Brauer II: Théorie cohomologique.Séminaire Bourbaki, 297 (1965).Google Scholar
  8. [8]
    Klein, F.,Elementary Mathematics from an Advanced Standpoint. Arithmetic, Algebra, Analysis. McMillan Co., 1932.Google Scholar
  9. [9]
    Klein, F.,Gesammelte Mathematische Abhandlungen. Vol. 2, Springer, 1922.Google Scholar
  10. [10]
    Klein, F.,Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade. B.G. Teubner, 1884.Google Scholar
  11. [11]
    McMullen, C., Braiding of the attractor and the failure of iterative algorithms.Invent. Math., 91 (1988), 259–272.CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    —, Families of rational maps and iterative root-finding algorithms.Ann. of Math., 125 (1987), 467–493.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    Merkurev, A. S. &Suslin, A. A.,K-cohomology of Severi-Brauer varieties and the norm residue homomorphisms.Math. USSR-Izv., 21 (1983), 307–340.CrossRefGoogle Scholar
  14. [14]
    Serre, J. P., Extensions icosaédriques. InOeuvres III, pp. 550–554. Springer-Verlag, 1986.Google Scholar
  15. [15]
    Serre, J. P.,Local Fields. Springer-Verlag, 1979.Google Scholar
  16. [16]
    Shub, M. &Smale, S., On the existence of generally convergent algorithms.J. Complexity, 2 (1986), 2–11.CrossRefMathSciNetMATHGoogle Scholar
  17. [17]
    Smale, S., On the efficiency of algorithms of analysis.Bull. Amer. Math. Soc., 13 (1985), 87–121.MATHMathSciNetCrossRefGoogle Scholar
  18. [18]
    Sullivan, D., Conformal dynamical systems. InGeometric Dynamics, pp. 725–752. Lecture Notes in Mathematics, 1007 (1983). Springer-Verlag.Google Scholar
  19. [19]
    Thurston, W. P., On the combinatorics and dynamics of iterated rational maps. Preprint.Google Scholar
  20. [20]
    van der Waerden, B. L.,Geometry and Algebra in Ancient Civilizations. Springer-Verlag, 1983.Google Scholar
  21. [21]
    van der Waerden, B. L.,A History of Algebra: from al-Khwarizmi to Emmy Noether. Springer-Verlag, 1985.Google Scholar

Copyright information

© Almqvist & Wiksell 1989

Authors and Affiliations

  • Peter Doyle
    • 1
  • Curt McMullen
    • 1
  1. 1.Princeton UniversityPrincetonUSA

Personalised recommendations