Acta Mathematica

, Volume 148, Issue 1, pp 193–214

On the stokes conjecture for the wave of extreme form

  • C. J. Amick
  • L. E. Fraenkel
  • J. F. Toland
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Amick, C. J. & Fraenkel, L. E., On the behaviour near the creast of waves of extreme form. To appear.Google Scholar
  2. [2]
    Amick, C. J. &Toland, J. F., On solitary water-waves of finite amplitude.Arch. Rational Math. Anal., 76 (1981), 9–95.MATHMathSciNetGoogle Scholar
  3. [3]
    — On periodic water-waves and their convergence to solitary waves in the long-wave limit.Math. Research Center report no. 2127 (1981),University of Wisconsin, Madison. Also,Philos. Trans. Roy. Soc. London, A 303 (1981), 633–669.MathSciNetGoogle Scholar
  4. [4]
    Cokelet, E. D., Steep gravity waves in water of arbitrary uniform depth.Philos. Trans. Roy. Soc. London, A 286 (1977), 183–230.MATHMathSciNetGoogle Scholar
  5. [5]
    Keady, G. &Norbury, J., On the existence theory for irrotational water waves.Math. Proc. Cambridge Philos. Soc., 83 (1978), 137–157.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Krasovskii, Yu. P., On the theory of steady-state waves of large amplitude.U.S.S.R. Computational Math. and Math. Phys., 1 (1961), 996–1018.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Longuet-Higgins, M. S. &Fox, M. J. H., Theory of the almost highest wave: the inner solution.J. Fluid Mech., 80 (1977), 721–742.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    McLeod, J. B., The Stokes and Krasovskii conjectures for the wave of greatest height.Math. Research Center report no. 2041 (1979),University of Wisconsin, Madison. Also to appear inMath. Proc. Cambridge Philos. Soc. Google Scholar
  9. [9]
    Stokes, G. G., On the theory of oscillatory waves.Trans. Cambridge Philos. Soc. 8 (1847), 441–455. Also,Mathematical and physical papers, vol. I. pp. 197–219, Cambridge, 1880.Google Scholar
  10. [10]
    —, Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form.Mathematical and physical papers., vol. I, pp. 225–228, Cambridge, 1880.Google Scholar
  11. [11]
    Toland, J. F., On the existence of a wave of greatest height and Stokes's conjecture.Proc. Roy. Soc. London, A 363 (1978), 469–485.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Almqvist & Wiksell 1982

Authors and Affiliations

  • C. J. Amick
    • 1
  • L. E. Fraenkel
    • 2
  • J. F. Toland
    • 3
  1. 1.University of ChicagoChicagoUSA
  2. 2.University of SussexBrightonEngland
  3. 3.University CollegeLondonEngland

Personalised recommendations