Acta Mathematica

, Volume 178, Issue 2, pp 143–167 | Cite as

Equivalent norms on lipschitz-type spaces of holomorphic functions

  • Konstantin M. Dyakonov
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [D1]Dyakonov, K. M., Smooth functions and coinvariant subspaces of the shift operator.Algebra i Analiz, 4: 5 (1992), 117–147; English translation inSt. Petersburg Math. J., 4 (1993), 933–959.MATHMathSciNetGoogle Scholar
  2. [D2]— Division and multiplication by inner functions and embedding theorems for starinvariant subspaces.Amer. J. Math., 115 (1993), 881–902.MATHMathSciNetGoogle Scholar
  3. [D3]—, The moduli of holomorphic functions in Lipschitz spaces.Michigan Math. J., 44 (1997), 139–147.CrossRefMATHMathSciNetGoogle Scholar
  4. [Dyn]Dyn'kin, E. M., The pseudoanalytic extension.J. Anal. Math., 60 (1993), 45–70.MATHMathSciNetGoogle Scholar
  5. [G]Garnett, J. B.,Bounded Analytic Functions. Academic Press, New York, 1981.Google Scholar
  6. [H]Havin, V. P., Generalization of the Privalov-Zygmund theorem on the modulus of continuity of the conjugate function.Izv. Akad. Nauk Armjan. SSR. Ser. Mat., 6 (1971), 252–258 and 265–277 (Russian).MATHMathSciNetGoogle Scholar
  7. [HS]Havin, V. P. &Shamoyan, F. A., Analytic functions with Lipschitz moduli of the boundary values.Zap. Nauchn Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 19 (1970), 237–239 (Russian).Google Scholar
  8. [K]Koosis, P.,Introduction to H p Spaces, Cambridge Univ. Press, Cambridge, 1980.Google Scholar
  9. [Sh1]Shirokov, N. A., Ideals and factorization in algebras of analytic functions smooth up to the boundary.Trudy Mat. Inst. Steklov., 130 (1978), 196–222 (Russian).MATHMathSciNetGoogle Scholar
  10. [Sh2]—,Analytic Functions Smooth up to the Boundary. Lecture Notes in Math., 1312, Springer-Verlag, Berlin-New York, 1988.Google Scholar
  11. [T]Tamrazov, P. M., Contour and solid structural properties of holomorphic functions of a complex variable.Uspekhi. Math. Nauk, 28: 1 (1973), 131–161 (Russian).MATHMathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1997

Authors and Affiliations

  • Konstantin M. Dyakonov
    • 1
    • 2
  1. 1.St. Petersburg University of Electrical EngineeringSt. PetersburgRussia
  2. 2.Departamento de Análisis MatemáticoUniversidad de La LagunaLa Laguna TenerifeSpain

Personalised recommendations