Acta Mathematica

, Volume 177, Issue 2, pp 113–161 | Cite as

The geometry of optimal transportation

  • Wilfrid Gangbo
  • Robert J. McCann
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abdellaoui, T., Détermination d'un couple optimal du problème de Monge-Kantorovitch.C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 981–984.MATHMathSciNetGoogle Scholar
  2. [2]
    Abdellaoui, T. &Heinich, H., Sur la distance de deux lois dans le cas vectoriel.C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 397–400.MathSciNetGoogle Scholar
  3. [3]
    Alberti, G., On the structure of singular sets of convex functions.Calc. Var. Partial Differential Equations, 2 (1994), 17–27.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    Aleksandrov, A. D., Existence and uniqueness of a convex surface with a given integral curvature.C. R. (Doklady) Acad. Sci. URSS (N.S.), 35 (1942), 131–134.MATHMathSciNetGoogle Scholar
  5. [5]
    Appell, P., Memoire sur les déblais et les remblais des systèmes continues ou discontinues.Mémoires présentés par divers Savants à l'Académie des Sciences de l'Institut de France, Paris, I. N., 29 (1887), 1–208.MathSciNetGoogle Scholar
  6. [6]
    Balder, E. J., An extension of duality-stability relations to non-convex optimization problems.SIAM J. Control Optim. 15 (1977), 329–343.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    Brenier, Y., Decomposition polaire et réarrangement monotone des champs de vecteurs.C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 805–808.MATHMathSciNetGoogle Scholar
  8. [8]
    —, Polar factorization and monotone rearrangement of vector-valued functions.Comm. Pure Appl. Math., 44 (1991), 375–417.MATHMathSciNetGoogle Scholar
  9. [9]
    Caffarelli, L., The regularity of mappings with a convex potential.J. Amer. Math. Soc., 5 (1992), 99–104.CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    —, Allocation maps with general cost functions, inPartial Differential Equations and Applications (P. Marcellini, G. Talenti and E. Vesintini, eds.), pp. 29–35. Lecture Notes in Pure and Appl. Math., 177. Dekker, New York, 1996.Google Scholar
  11. [11]
    Cuesta-Albertos, J. A. &Matrán, C., Notes on the Wasserstein metric in Hilbert spaces.Ann. Probab., 17 (1989), 1264–1276.MathSciNetGoogle Scholar
  12. [12]
    Cuesta-Albertos, J. A., Matrán, C. & Tuero-Díaz, A., Properties of the optimal maps for theL 2-Monge-Kantorovich transportation problem. Preprint.Google Scholar
  13. [13]
    Cuesta-Albertos, J. A., Rüschendorf, L. &Tuero-Díaz, A., Optimal coupling of multivariate distributions and stochastic processes.J. Multivariate Anal., 46 (1993), 335–361.CrossRefMathSciNetGoogle Scholar
  14. [14]
    Cuesta-Albertos, J. A. &Tuero-Díaz, A., A characterization for the solution of the Monge-Kantorovich mass transference problem.Statist. Probab. Lett., 16 (1993), 147–152.CrossRefMathSciNetGoogle Scholar
  15. [15]
    Dall'Aglio, G., Sugli estremi dei momenti delle funzioni di ripartizione-doppia.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 10 (1956), 35–74.MATHMathSciNetGoogle Scholar
  16. [16]
    Darboux, G., Prix Bordin (géométrie).C. R. Acad. Sci. Paris, 101 (1885), 1312–1316.Google Scholar
  17. [17]
    Douglis, A., Solutions in the large for multi-dimensional non-linear partial differential equations of first order.Ann. Inst. Fourier (Grenoble), 15:2 (1965), 1–35.MATHMathSciNetGoogle Scholar
  18. [18]
    Evans, L. C. & Gangbo, W., Differential equations methods for the Monge-Kantorovich mass transfer problem. Preprint.Google Scholar
  19. [19]
    Fréchet, M., Sur la distance de deux lois de probabilité.C. R. Acad. Sci. Paris, 244 (1957), 689–692.MATHMathSciNetGoogle Scholar
  20. [20]
    Gangbo, W. &McCann, R. J., Optimal maps in Monge's mass transport problem.C. R. Acad. Sci. Paris Sér. I Math., 321 (1995), 1653–1658.MathSciNetGoogle Scholar
  21. [21]
    Kantorovich, L., On the translocation of masses.C. R. (Doklady) Acad. Sci. URSS (N. S.), 37 (1942), 199–201.MathSciNetGoogle Scholar
  22. [22]
    —, On a problem of Monge.Uspekhi Mat. Nauk. 3 (1948), 225–226 (in Russian).Google Scholar
  23. [23]
    Katz, B. S. (editor),Nobel Laureates in Economic Sciences: A Biographical Dictionary. Garland Publishing Inc., New York, 1989.Google Scholar
  24. [24]
    Kellerer, H. G., Duality theorems for marginal problems.Z. Wahrsch. Verw. Gebiete, 67 (1984), 399–432.CrossRefMATHMathSciNetGoogle Scholar
  25. [25]
    Knott, M. &Smith, C. S., On the optimal mapping of distributions.J. Optim. Theory Appl., 43 (1984), 39–49.CrossRefMathSciNetGoogle Scholar
  26. [26]
    Levin, V. L., General Monge-Kantorovich problem and its applications in measure theory and mathematical economics, inFunctional Analysis, Optimization, and Mathematical Economics (L. J. Leifman, ed.), pp. 141–176. Oxford Univ. Press, New York, 1990.Google Scholar
  27. [27]
    McCann, R. J., Existence and uniqueness of monotone measure-preserving maps.Duke Math. J., 80 (1995), 309–323.CrossRefMATHMathSciNetGoogle Scholar
  28. [28]
    McCann, R. J., A convexity principle for interacting gases. To appear inAdv. in Math. Google Scholar
  29. [29]
    McCann, R. J., Exact solutions to the transportation problem on the line. To appear.Google Scholar
  30. [30]
    Monge, G., Mémoire sur la théorie des déblais et de remblais.Histoire de l'Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, 1781, pp. 666–704.Google Scholar
  31. [31]
    Rachev, S. T., The Monge-Kantorovich mass transference problem and its stochastic applications.Theory Probab. Appl., 29 (1984), 647–676.CrossRefGoogle Scholar
  32. [32]
    Rockafellar, R. T., Characterization of the subdifferentials of convex functions.Pacific J. Math., 17 (1966), 497–510.MATHMathSciNetGoogle Scholar
  33. [33]
    —,Convex Analysis. Princeton Univ. Press, Princeton, NJ, 1972.Google Scholar
  34. [34]
    Rüschendorf, L., Bounds for distributions with multivariate marginals, inStochastic Orders and Decision Under Risk (K. Mosler and M. Scarsini, eds.), pp. 285–310. IMS Lecture Notes-Monograph Series. Inst. of Math. Statist, Hayward, CA, 1991.Google Scholar
  35. [35]
    —, Frechet bounds and their applications, inAdvances in Probability Distributions with Given Marginals (G. Dall'Aglio et al., eds.), pp. 151–187. Math. Appl., 67. Kluwer Acad. Publ., Dordrecht, 1991.Google Scholar
  36. [36]
    —, Optimal solutions of multivariate coupling problems.Appl. Math. (Warszaw), 23 (1995), 325–338.MATHGoogle Scholar
  37. [37]
    —, Onc-optimal random variables.Statist. Probab. Lett., 27 (1996), 267–270.CrossRefMATHMathSciNetGoogle Scholar
  38. [38]
    Rüschendorf, L. &Rachev, S. T., A characterization of random variables with minimumL 2-distance.J. Multivariate Anal., 32 (1990), 48–54.CrossRefMathSciNetGoogle Scholar
  39. [39]
    Schneider, R.,Convex Bodies: The Brunn-Minkowski Theory. Cambridge Univ. Press, Cambridge, 1993.Google Scholar
  40. [40]
    Smith, C. &Knott, M., On the optimal transportation of distributions.J. Optim. Theory Appl., 52 (1987), 323–329.CrossRefMathSciNetGoogle Scholar
  41. [41]
    —, On Hoeffding-Fréchet bounds and cyclic monotone relations.J. Multivariate Anal., 40 (1992), 328–334.CrossRefMathSciNetGoogle Scholar
  42. [42]
    Sudakov, V. N., Geometric problems in the theory of infinite-dimensional probability distributions.Proc. Steklov Inst. Math., 141 (1979), 1–178.MathSciNetGoogle Scholar
  43. [43]
    Zajíĉek, L., On the differentiation of convex functions in finite and infinite dimensional spaces.Czechoslovak Math. J. 29 (104) (1979), 340–348.MathSciNetGoogle Scholar

Copyright information

© Institut Mittag-Leffler 1996

Authors and Affiliations

  • Wilfrid Gangbo
    • 1
  • Robert J. McCann
    • 2
    • 3
  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaU.S.A.
  2. 2.Department of MathematicsBrown UniversityProvidenceU.S.A.
  3. 3.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations