Advertisement

Acta Mathematica

, Volume 177, Issue 1, pp 75–112 | Cite as

Quasi-isometric rigidity and diophantine approximation

  • Richard Evan Schwartz
Article

Keywords

Diophantine Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [FS]Farb, B. & Schwartz, R. The large-scale geometry of Hilbert modular groups. Preprint, 1994.Google Scholar
  2. [Ge]Geer, G. van der,Hilbert Modular Surfaces. Ergebnisse der Mathematik (3), 16. Springer-Verlag, Berlin-New York, 1987.Google Scholar
  3. [Gr]Gromov, M., Asymptotic invariants of infinite groups, inGeometric Group Theory, Vol. 2 (Sussex, 1991), pp. 1–295. London Math. Soc. Lecture Note Ser., 182. Cambridge Univ. Press, 1993.Google Scholar
  4. [KL]Kleiner, B. & Leeb, B., Rigidity of quasi-isometries for symmetric spaces of higher rank. Preprint, 1995.Google Scholar
  5. [M1]Mostow, G. D., Quasi-conformal mappings inn-space and the rigidity of hyperbolic space forms.Ints. Hautes Études Sci. Publ. Math., 34 (1968), 53–104.zbMATHMathSciNetGoogle Scholar
  6. [M2] —,Strong Rigidity of Locally Symmetric Spaces. Ann. of Math. Stud., 78. Princeton Univ. Press, Pricceton, NJ, 1973.Google Scholar
  7. [O]Ono, T.,An Introduction to Algebraic Number Theory. Plenum Press, New York, 1990.Google Scholar
  8. [P]Pansu, P., Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang um.Ann. of Math. (2), 129 (1989), 1–60.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [Sch]Schwartz, R., The quasi-isometry classification of rank one lattices.Inst. Hautes Études Sci. Publ. Math., 82 (1995), 133–168.zbMATHGoogle Scholar
  10. [Se]Selberg, A., Recent developments in the theory of discontinuous groups of motions of symmetric spaces, inProceedings of the 15th Scandinavian Congress (Oslo, 1968), pp. 99–120. Lecture Notes in Math., 118, Springer-Verlag, Berlin-New York, 1970.Google Scholar

Copyright information

© Institut Mittag-Leffler 1996

Authors and Affiliations

  • Richard Evan Schwartz
    • 1
  1. 1.Department of MathematicsUniversity of MarylandCollege Park, MDU.S.A.

Personalised recommendations