Advertisement

Acta Mathematica

, Volume 159, Issue 1, pp 81–98 | Cite as

A Banach space without a basis which has the bounded approximation property

  • Stanislaw J. Szarek
Article

Keywords

Banach Space Approximation Property Bound Approximation Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bockarev, S. V., Existence of a basis in the space of functions analytic in a disc and some properties of the Franklin system.Mat. Sb., 95 (1974), 3–18 (russian).zbMATHMathSciNetGoogle Scholar
  2. [2]
    —, Construction of bases in finite dimensional spaces of functions analytic in a disc.Dokl. Akad. Nauk SSSR, 264 (1982), 1295–1297 (russian).MathSciNetGoogle Scholar
  3. [3]
    Bourgain, J., Real isomorphic complex Banach spaces need not be complex isomorphic.Proc. Amer. Math. Soc., 96 (1986), 221–226.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    Bourgain, J. &Milman, V., Dichotomie du cotype pour les espaces invariants.C. R. Acad. Sci. Paris, 300 (1985), 263–266.MathSciNetGoogle Scholar
  5. [5]
    Bourgain, J. & Pelczynski, A., Private communication.Google Scholar
  6. [6]
    Brown, L. G. & Kosaki, H., Jensen's inequality in semi-finite von Neumann algebras. Preprint.Google Scholar
  7. [7]
    Enflo, P., A counterexample to the approximation property in Banach spaces.Acta Math., 130 (1973), 309–317.zbMATHMathSciNetGoogle Scholar
  8. [8]
    Figiel, T. &Johnson, W. B., The approximation property does not imply the bounded approximation property.Proc. Amer. Math. Soc., 4 (1973), 197–200.CrossRefMathSciNetGoogle Scholar
  9. [9]
    —, Large subspaces ofl n and estimates of the Gordon-Lewis constant.Israel J. Math., 37 (1980), 92–112.zbMATHMathSciNetGoogle Scholar
  10. [10]
    Gluskin, E. D., The diameter of Minkowski compactum is roughly equal ton.Functional Anal. Appl., 15 (1981), 72–73.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    —, Finite dimensional analogues of spaces without a basis.Dokl. Akad. Nauk SSSR, 261 (1981), 1046–1050 (russian).zbMATHMathSciNetGoogle Scholar
  12. [12]
    Grothendieck, A., Produits tensoriels topologiques et espaces nucleaires.Mem. Amer. Math. Soc., 16 (1955).Google Scholar
  13. [13]
    Johnson, W. B., Factoring compact operators.Israel J. Math., 9 (1971), 337–345.zbMATHMathSciNetGoogle Scholar
  14. [14]
    Johnson, W. B., Rosenthal, H. P. &Zippin, M., On bases, finite dimensional decomposition and weaker structures in Banach spaces.Israel J. Math., 9 (1971), 488–506.MathSciNetGoogle Scholar
  15. [15]
    Lewis, D. R., Finite dimensional subspaces ofL p.Studia Math., 63 (1978), 207–212.zbMATHMathSciNetGoogle Scholar
  16. [16]
    Lindenstrauss, J. &Pelczynski, A., Absolutely summing operators in ℒp-spaces and their applications.Studia Math., 29 (1968), 275–326.MathSciNetGoogle Scholar
  17. [17]
    Lindenstrauss, J. &Rosenthal, H. P., The ℒp-spaces.Israel J. Math., 7 (1969), 325–349.MathSciNetGoogle Scholar
  18. [18]
    Lindenstrauss, J. & Tzafriri, L.,Classical Banach Spaces Vol. I & II. Springer Verlag, 1977 & 1979.Google Scholar
  19. [19]
    Milman, V., The geometric theory of Banach spaces, part II.Uspekhi Mat. Nauk, 26 (162) (1971), 73–149 (russian).zbMATHMathSciNetGoogle Scholar
  20. [20]
    Pelczynski, A., Any separable Banach space with the bounded approximation property is a complemented subspace of a space with a basis.Studia Math., 40 (1971), 239–243.zbMATHMathSciNetGoogle Scholar
  21. [21]
    —, All separable Banach spaces admit for every ε>0 fundamental total and bounded by 1+ε biorthogonal sequences.Studia Math., 55 (1976), 295–303.zbMATHMathSciNetGoogle Scholar
  22. [22]
    Pisier, G., Un theoreme sur les operateurs entre espaces de Banach qui se factorisent par un espace de Hilbert.Ann. Sci. École Norm. Sup., 13 (1980), 23–43.zbMATHMathSciNetGoogle Scholar
  23. [23]
    —, Counterexamples to a conjecture of Grothendieck.Acta Math., 151 (1983), 181–208.zbMATHMathSciNetGoogle Scholar
  24. [24]
    Pujara, L., ℒp-spaces and decompositions in Banach spaces. Thesis, Ohio State University, 1971.Google Scholar
  25. [25]
    —, Some local structures in Banach spaces.Math. Japon., 20 (1975), 49–54.zbMATHMathSciNetGoogle Scholar
  26. [26]
    Rogalski, M., Sur le quotient volumnique d'un espace de dimension finie.Seminaire d'Initiation a l'Analyse 1980/81. Comm. No. 3, Universite Paris VI.Google Scholar
  27. [27]
    Singer, I.,Bases in Banach Spaces II. 1981.Google Scholar
  28. [28]
    Szankowski, A., Subspaces without approximation property.Israel J. Math. 30 (1978), 123–129.zbMATHMathSciNetGoogle Scholar
  29. [29]
    Szarek, S. J., On Kashin's Almost Euclidean Orthogonal Decomposition ofl 1m.Bull. Acad. Polon. Sci., 26 (1978), 691–694.zbMATHMathSciNetGoogle Scholar
  30. [30]
    —, The finite dimensional basis problem with an appendix on nets of Grassmann manifolds.Acta Math., 151 (1983), 153–179.zbMATHMathSciNetGoogle Scholar
  31. [31]
    —, On the existence and uniqueness of complex structure and spaces with few operators.Trans. Amer. Math. Soc., 293 (1986), 339–353.CrossRefzbMATHMathSciNetGoogle Scholar
  32. [32]
    —, A superreflexive Banach space which does not admit complex structure.Proc. Amer. Math. Soc., 97 (1986), 437–444.CrossRefzbMATHMathSciNetGoogle Scholar
  33. [33]
    Szarek, S. J., A Banach space without a basis which has the Bounded Approximation Property. CWRU preprint, March 1985.Google Scholar
  34. [34]
    Szarek, S. J. &Tomczak-Jaegermann, N., On nearly Euclidean decompositions for some classes of Banach spaces.Compositio Math., 40 (1970), 367–385.MathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1987

Authors and Affiliations

  • Stanislaw J. Szarek
    • 1
  1. 1.Case Western Reverse UniversityClevelandUSA

Personalised recommendations