Acta Mathematica

, Volume 155, Issue 1, pp 261–301 | Cite as

The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian

  • L. Caffarelli
  • L. Nirenberg
  • J. Spruck
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Caffarelli, L., Nirenberg, L. &Spruck, J., The Dirichlet problem for nonlinear second order elliptic equations, I: Monge-Ampère equations.Comm. Pure Appl. Math. 37 (1984), 369–402.MathSciNetGoogle Scholar
  2. [2]
    Caffarelli, L., Kohn, J. J., Nirenberg, L. &Spruck, J.. The Dirichlet problem for nonlinear second order elliptic equations, II: Complex Monge-Ampère, and uniformly elliptic equations.Comm. Pure Appl. Math., 38 (1985), 209–252.MathSciNetGoogle Scholar
  3. [3]
    Gårding, L., An inequality for hyperbolic polynomials.J. Math. Mech., 8 (1959), 957–965.MATHMathSciNetGoogle Scholar
  4. [4]
    Harvey, R. &Lawson jr, H. B., Calibrated geometries.Acta Math., 148 (1982), 47–157.MathSciNetGoogle Scholar
  5. [5]
    Ivočkina, N. M., The integral method of barrier functions and the Dirichlet problem for equations with operators of Monge-Ampère type.Mat. Sb. (N.S.), 112 (1980), 193–206 (Russian);Math. USSR-Sb., 40 (1981), 179–192 (English).MathSciNetGoogle Scholar
  6. [6]
    Krylov, N. V., Boundedly inhomogeneous elliptic and parabolic equations in a domain.Izv. Akad. Nauk SSSR, 47 (1983), 75–108.MATHMathSciNetGoogle Scholar
  7. [7]
    Marcus, M., An eigenvalue inequality for the product of normal matrices.Amer. Math. Monthly, 63 (1956), 173–174.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1985

Authors and Affiliations

  • L. Caffarelli
    • 1
  • L. Nirenberg
    • 2
  • J. Spruck
    • 3
  1. 1.University of ChicagoChicagoUSA
  2. 2.Courant InstituteNYUNew YorkUSA
  3. 3.University of MassachusettsAmherstUSA

Personalised recommendations