Acta Mathematica

, Volume 171, Issue 2, pp 263–297

A proof of Thurston's topological characterization of rational functions

  • Adrien Douady
  • John H. Hubbard


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]Ahlfors, L.,Lectures on Quasiconformal Mappings. Van Nostrand, 1966.Google Scholar
  2. [B]Beardon, A. F.,The Geometry of Discrete Groups. Springer-Verlag, 1983.Google Scholar
  3. [BFH]Bielefeld, B., Fischer, Y. &Hubbard, J. H., The classification of critically preperiodic polynomials as dynamical systems.J. Amer. Math. Soc., 5 (1992), 721–762.CrossRefMathSciNetGoogle Scholar
  4. [G]Gunning, R.,Lectures on Riemann Surfaces. Mathematical Notes, Princeton University, Press, 1966.Google Scholar
  5. [H]Hubbard, J. H.,Sur les sections analytiques de la courbe universelle de Teichmüller. Mem. Amer. Math. Soc., 166, 1976.Google Scholar
  6. [H-M]Hubbard, J. H. &Masur, H., Quadratic differentials and foliations.Acta Math., 142 (1979), 221–274.MathSciNetGoogle Scholar
  7. [J]Jenkins, J. A., On the existence of certain general extremal metrics.Ann. of Math., 66 (1957), 440–453.CrossRefMATHMathSciNetGoogle Scholar
  8. [O]Ohtsuka, M.,Dirichlet Problem, Extremal Length and Prime Ends. Van Nostrand Reinhold Math. Stud., 22, 1970.Google Scholar
  9. [R]Royden, H., Automorphisms and isometries of Teichmüller space, inAdvances in the Theory of Riemann Surfaces, pp. 369–383. Ann. of Math. Stud., 66. Princeton University Press, 1971.Google Scholar
  10. [S]Strebel, K.,On Quadratic Differentials and Extremal Quasiconformal Mappings. Lecture Notes, University of Minnesota, 1967.Google Scholar
  11. [T1]Thurston, W.,Lecture Notes. Princeton University.Google Scholar
  12. [T2]Thurston, W.,Lecture Notes. CBMS Conference, University of Minnesota at Duluth, 1983.Google Scholar

Copyright information

© Almqvist & Wiksell 1993

Authors and Affiliations

  • Adrien Douady
    • 1
  • John H. Hubbard
    • 2
  1. 1.Département MathématiquesUniversité Paris-SudOrsayFrance
  2. 2.Department of MathematicsCornell UniversityIthacaU.S.A.

Personalised recommendations