Acta Mathematica

, Volume 146, Issue 1, pp 231–270 | Cite as

On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces

  • Irwin Kra
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abikoff, W., Degenerating families of Riemann surfaces.Ann. of Math., 105 (1977), 29–44.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Abikoff, W.,The Real Analytic Theory of Techmüller Spaces. Springer Lecture Notes in Mathematics, 820 (1980).Google Scholar
  3. [3]
    Ahlfors, L. V., On quasiconformal mappings.J. Analyse Math., 3 (1953/4), 1–58.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Baer, R., Kurventypen auf Flächen.J. Reine Angew. Math., 156 (1927), 231–246.MATHGoogle Scholar
  5. [5]
    —, Isotopie von Kurven auf orientierbaren, geschlossernen Flachen und ihr Zusammenhang mit der topologischen Deformation der Flachen.J. Reine Angew. Math., 159. (1928), 101–111.MATHGoogle Scholar
  6. [6]
    Bers, L., On boundaries of Teichmüller spaces and on Kleinian groups: I.Ann. of Math., 91 (1970), 570–600.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    —, Extremal quasiconformal mappings, Advances in the theory of Riemann surfaces.Ann. of Math. Studies, 66 (1971), 27–52.MathSciNetGoogle Scholar
  8. [8]
    —, Fiber spaces over Teichmüller spaces.Acta Math., 130 (1973), 89–126.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    —, An extremal problem for quasiconformal mappings and a theorem by Thurston.Acta Math., 141 (1978), 73–98.MATHMathSciNetGoogle Scholar
  10. [10]
    —, The action of the modular group on the complex boundary, Riemann surfaces and related topics.Ann. of Math. Studies, 97 (1980), 33–52.MathSciNetGoogle Scholar
  11. [11]
    Birman, J. S., The algebraic structure of surface mapping class group: Chapter 6 ofDiscrete Groups and Automorphic Functions. Edited by W. J. Harvey, Academic Press, London, 1977, 163–198.Google Scholar
  12. [12]
    Earle, C. J., On holomorphic cross sections in Teichmüller spaces.Duke Math. J., 36 (1969), 409–416.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    Earle, C. J. &Kra, I., On holomophic mappings between Teichmüller spaces, inContributions to Analysis. Edited by L. V. Ahlfors, et al., Academic Press, New York, 1974, 107–124.Google Scholar
  14. [14]
    Epstein, D. B. A., Curves on 2-manifolds and isotopies.Acta Math., 115 (1966), 83–107.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Farkas, H. M. &Kra, I.,Riemann Surfaces, Springer-Verlag, New York and Berlin, 1980.MATHGoogle Scholar
  16. [16]
    Gardiner, F. P., Schiffer's interior variation and quasiconformal mapping.Duke Math. J., 42 (1975), 371–380.MATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    Gehring, F. W., Quasiconformal mappings which hold the real axis pointwise fixed, inMathematical Essays dedicated to A. J. Macintyne, Ohio Univ. Press, Athens, Ohio, 1970, 145–148.Google Scholar
  18. [18]
    Gilman, J., On the Nielsen type and the classification for the mapping-class group. To appear.Google Scholar
  19. [19]
    Kerckhoff, S. P., The asymptotic geometry of Teichmüller space.Topology, 19 (1980), 23–41.MATHMathSciNetCrossRefGoogle Scholar
  20. [20]
    —, The Nielsen realization problem.Bull. Amer. Math. Soc., 2 (1980), 452–454.MATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    Kra, I.,Automorphic forms and Kleinian groups. Benjamin, Reading, Massachusetts, 1972.MATHGoogle Scholar
  22. [22]
    — On new kinds of Teichmüller spaces.Israel J. Math., 16 (1973), 237–257.MathSciNetGoogle Scholar
  23. [23]
    —, On Teichmüller's theorem on the quasi-invariance of the cross ratios.Israel J. Math., 30 (1978), 152–158.MATHMathSciNetGoogle Scholar
  24. [24]
    Kra, I., Canonical mappings between Teichmüller spaces.Bull. Amer. Math. Soc. To appear.Google Scholar
  25. [25]
    Kravetz, S., On the geometry of Teichmüller spaces and the structure of their modular groups.Ann. Acad. Sci. Fenn., 278 (1959), 1–35.MathSciNetGoogle Scholar
  26. [26]
    Marden, A. &Masur, H., A foliation of Teichmüller space by twist invariant discs.Math. Scand., 36 (1975), 211–228 and Addendum, 39 (1976), 232–238.MATHMathSciNetGoogle Scholar
  27. [27]
    Maskit, B. & Matelski, J. P., Minimal geodesics on surfaces. To appear.Google Scholar
  28. [28]
    Matelski, J. P., A compactness theorem for Fuchsian groups of the second kind.Duke Math. J., 43 (1976), 829–840.MATHMathSciNetCrossRefGoogle Scholar
  29. [29]
    Nag, S., Non-geodesic discs embedded in Teichmüller spaces. To appear.Google Scholar
  30. [30]
    Nielsen, J., Untersuchungen zur Topologie der geschlossenen zweiseitigen Flachen.Acta Math., 50 (1927), 189–358; 53 (1929), 1–76; and 58 (1932), 87–167.MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    Poénaru, V., Travaux de Thurston sur les diffeomorphismes des surfaces et l'espace de Teichmüller.Sem. Bourbaki, 529 (1978/79).Google Scholar
  32. [32]
    Poénaru, V. et al., Travaux de Thurston sur les surfaces.Asterisque, 66–67 (1979).Google Scholar
  33. [33]
    Riera, G., Semi-direct products of Fuchsian groups and uniformization.Duke Math. J., 44 (1977), 291–304.MATHMathSciNetCrossRefGoogle Scholar
  34. [34]
    Royden, H. L., Automorphisms and isometries of Techmüller space, Advances in the theory of Riemann surfaces.Ann. of Math. Studies, 66 (1971), 369–383.MathSciNetGoogle Scholar
  35. [35]
    Teichmüller, O., Ein Verschiebungssatz der quasikonformen Abbildung.Deutsche Math., 7 (1942), 336–343.Google Scholar
  36. [36]
    Thurston, W. P., On the geometry and dynamics of diffeomorphisms of surfaces. To appear.Google Scholar

Copyright information

© Almqvist & Wiksell 1981

Authors and Affiliations

  • Irwin Kra
    • 1
  1. 1.State University of New York at Stony BrookUSA

Personalised recommendations