Acta Mathematica

, Volume 170, Issue 1, pp 29–81 | Cite as

Quasiregular mappings in even dimensions

  • Tadeusz Iwaniec
  • Gaven Martin


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A1]
    Ahlfors, L. V.,Lectures on Quasiconformal Mappings. Van Nostrand, Princeton, 1966; Reprinted by Wadsworth Inc., Belmont, 1987.Google Scholar
  2. [A2]
    —, Conditions for quasiconformal deformations in several variables, inContributions to Analysis, pp. 19–25. Academic Press, New York, 1974.Google Scholar
  3. [AB]
    Ahlfors, L. V. &Beurling, A., Conformal invariants and function theoretic null sets.Acta Math., 83 (1950), 101–129.MathSciNetGoogle Scholar
  4. [B]
    Boyarski, B. V., Homeomorphic solutions of Beltrami systems.Dokl. Akad. Nauk SSSR, 102 (1955), 661–664.MathSciNetGoogle Scholar
  5. [BI1]
    Boyarski, B. V. &Iwaniec, T., Another approach to Liouville Theorem.Math. Nachr., 107 (1982), 253–262.MathSciNetGoogle Scholar
  6. [BI2]
    —, Analytical foundations of the theory of quasiconformal mappings in Rn.Ann. Acad. Sci. Fenn. Ser. A I Math., 8 (1983), 257–324.MathSciNetGoogle Scholar
  7. [DS]
    Donaldson, S. K. &Sullivan, D. P., Quasiconformal 4-manifolds.Acta Math., 163 (1989), 181–252.MathSciNetGoogle Scholar
  8. [E]
    Edwards, R. E.,Fourier Series, vol. II. Holt, Rinehart, Winston, 1967.Google Scholar
  9. [FIP]
    Fifiel, T., Iwaniec, T. &Pelczynski, A., Computing norms and critical exponents of some operators inL p-spaces.Studia Math., 79 (1984), 227–274.MathSciNetGoogle Scholar
  10. [F]
    Flanders, H.,Differential Forms. Academic Press, 1963.Google Scholar
  11. [FU]
    Freed, D. S. & Uhlenbeck, K. K.,Instantons and Four Manifolds. Math. Sci. Res. Publ., 1. Springer-Verlag, 1972.Google Scholar
  12. [Ga]
    Garnett, J.,Analytic Capacity and Measure. Lecture Notes in Math., 297. Springer-Verlag, 1972.Google Scholar
  13. [GR]
    Garcia-Cuerva, J. & Rubio de Francia, J. L.,Weighted Norm Inequalities and Related Topics. Notas de Matemática, 104; North-Holland Math. Studies, 116. North-Holland, 1985.Google Scholar
  14. [G1]
    Gehring, F. W., Rings and quasiconformal mappings in space.Trans. Amer. Math. Soc., 103 (1962), 353–393.CrossRefMATHMathSciNetGoogle Scholar
  15. [G2]
    —, TheL p-integrability of the partial derivatives of a quasiconformal mapping.Acta Math., 130 (1973), 265–277.MATHMathSciNetGoogle Scholar
  16. [G3]
    Gehring, F. W., Topics in quasiconformal mappings, inProceedings of the ICM, Berkeley, 1986, pp. 62–82.Google Scholar
  17. [GLM]
    Granlund, S., Lindqvist, P. &Martio, O., Conformally invariant variational integrals.Trans. Amer. Math. Soc., 277 (1983), 43–73.CrossRefMathSciNetGoogle Scholar
  18. [I1]
    Iwaniec, T., Some aspects of partial differential equations and quasiregular mappings, inProceedings of the ICM, Warsaw, 1983, pp. 1193–1208.Google Scholar
  19. [I2]
    Iwaniec, T.,Regularity Theorems for the Solutions of Partial Differential Equations Related to Quasiregular Mappings in Several Variables. Preprint Polish Acad. Sci., Habilitation Thesis, pp. 1–45, 1978; Dissertationes Mathematicae, CXCVIII, 1982.Google Scholar
  20. [I3]
    Iwaniec, T., On Cauchy-Riemann derivatives in several real variables.Lecture Notes in Math., 1039 (1983), 220–224. Springer-Verlag.Google Scholar
  21. [I4]
    —, Projections onto gradient fields andL p-estimates for degenerate elliptic operators.Studia Math., 75 (1983), 293–312.MathSciNetGoogle Scholar
  22. [I5]
    —,p-harmonic tensors and quasiregular mappings.Ann. of Math., 136 (1992), 651–685.CrossRefMathSciNetGoogle Scholar
  23. [IM1]
    Iwaniec, T. &Martin, G. J., Quasiconformal mappings and capacity.Indiana Math. J., 40 (1991), 101–122.CrossRefMathSciNetGoogle Scholar
  24. [IM2]
    Iwaniec, T. & Martin, G. J., The Beurling-Ahlfors transform in Rn and related singular integrals. I.H.E.S. Preprint, 1990.Google Scholar
  25. [JV]
    Järvi, P. & Vuorinen, M., Self-similar Cantor sets and quasiregular mappings. Institut Mittag-Leffler Report, no. 27, 1989/90; To appear inJ. Reine Angew. Math. Google Scholar
  26. [KM]
    Koskela, P. & Martio, O., Removability theorems for quasiregular mappings. To appear inAnn. Acad. Sci. Fenn. Ser. A I Math.Google Scholar
  27. [LM]
    Lawson, H. B. & Michelson, M. L.,Spin Geometry. Princeton Univ. Press, 1989.Google Scholar
  28. [Le]
    Lehto, O., Quasiconformal mappings and singular integrals.Sympos. Math., XVIII (1976), 429–453. Academic Press, London.Google Scholar
  29. [LF]
    Lelong-Ferrand, J., Geometrical interpretations of scalar curvature and regularity of conformal homeomorphisms, inDifferential Geometry and Relativity (A. Lichnerowicz Sixtieth Birthday Volume), Reidel, 1976, pp. 91–105.Google Scholar
  30. [L]
    Liouville, J., Théorème sur l'équationdx 2+dy 2+dz 2 = λ( 2+ 2+ 2).J. Math. Pures Appl. 1, 15 (1850), 103.Google Scholar
  31. [Ma]
    Manfredi, J., Regularity for minima of functionals withp-growth.J. Differential Equations, 76 (1988), 203–212.CrossRefMATHMathSciNetGoogle Scholar
  32. [M]
    Maz'ja, G. V.,Sobolev Spaces. Springer-Verlag, 1985.Google Scholar
  33. [MRV1]
    Martio, O., Rickman, S. &Väisälä, J., Definitions for quasiregular mappings.Ann. Acad. Sci. Fenn. Ser. AI Math., 448 (1969), 1–40.Google Scholar
  34. [MRV2]
    —, Distortion and singularities of quasiregular mappings.Ann. Acad. Sci. Fenn. Ser. A I Math., 465 (1970), 1–13.Google Scholar
  35. [MRV3]
    —, Topological and metric properties of quasiregular mappings.Ann. Acad. Sci. Fenn. Ser. A I Math., 488 (1971), 1–31.Google Scholar
  36. [MSa]
    Martio, O. &Sarvas, J., Injective theorems in plane and space.Ann. Acad. Sci. Fenn. Ser. A I Math., 4 (1979), 383–401.MathSciNetGoogle Scholar
  37. [MS]
    Martio, O. &Srebro, U., Automorphic quasimeromorphic mappings.Acta Math., 135 (1975), 221–247.MathSciNetGoogle Scholar
  38. [P]
    Poletsky, E. A., On the removal of singularities of quasiconformal mappings.Math. USSSR-Sb., 21 (1973), 240–254.CrossRefGoogle Scholar
  39. [Pe]
    Peltonen, K.,Quasiregular Mappings onto S n. Lic. Thesis, Helsinki, 1988.Google Scholar
  40. [R1]
    Reshetnyak, Y. G., Liouville's conformal mapping theorem under minimal regularity assumptions.Sibirsk. Mat. Zh., 8 (1967), 835–840.MATHGoogle Scholar
  41. [R2]
    —, Differentiable properties of quasiconformal mappings and conformal mappings of Riemannian spaces.Sibirsk. Mat. Zh., 19 (1978), 1166–1183.MATHMathSciNetGoogle Scholar
  42. [R3]
    Space Mappings with Bounded Distortion. Transl. Math. Monographs, 73, Amer. Math. Soc., Providence, 1989.Google Scholar
  43. [Ri1]
    Rickman, S., The analogue of Picard's Theorem for quasiregular mappings in dimension three.Acta Math., 154 (1985), 195–242.MATHMathSciNetGoogle Scholar
  44. [Ri2]
    —, Asymptotic values and angular limits of quasiregular mappings of a ball.Ann. Acad. Sci. Fenn. Ser. A I Math., 5 (1980), 185–196.MATHMathSciNetGoogle Scholar
  45. [Ri3]
    Rickman, S., Nonremovable Cantor sets for bounded quasiregular mappings. To appear inAnn. Acad. Sci. Fenn. Ser. A I Math. Google Scholar
  46. [Ri4]
    Rickman, S., Quasiregular mappings. To appear.Google Scholar
  47. [Sa]
    Sarvas, J., Quasiconformal semiflows.Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1982), 197–219.MATHMathSciNetGoogle Scholar
  48. [S]
    Stein, E. M.,Singular Integrals and Differentiable Properties of Functions. Princeton Univ. Press, 1970.Google Scholar
  49. [T]
    Teleman, N., The Index Theorem for topological manifolds.Acta Math., 153 (1984), 117–152.MATHMathSciNetGoogle Scholar
  50. [Tu]
    Tukia, P., Hausdorff dimension and quasisymmetric mappings.Math. Scand., 65 (1989), 152–160.MATHMathSciNetGoogle Scholar
  51. [Tu2]
    —, Automorphic quasimeromorphic mappings for torisonless hyperbolic groups.Ann. Acad. Sci. Fenn. Ser. A I Math., 10 (1985), 545–560.MATHMathSciNetGoogle Scholar
  52. [V]
    Vuorinen, M.,Conformal Geometry and Quasiregular Mappings. Lecture Notes in Math., 1319. Springer-Verlag, 1988.Google Scholar

Copyright information

© Almqvist & Wiksell 1993

Authors and Affiliations

  • Tadeusz Iwaniec
    • 1
    • 2
  • Gaven Martin
    • 1
    • 3
  1. 1.Institut Mittag-LefflerDjursholmSweden
  2. 2.Department of MathematicsSyracuse UniversitySyracuseUSA
  3. 3.Department of Mathematics and StatisticsUniversity of AucklandAucklandNew Zealand

Personalised recommendations