Advertisement

Acta Mathematica

, Volume 137, Issue 1, pp 151–169 | Cite as

On the consistency of Borel's conjecture

  • Richard Laver
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Besicovitch, A. S., Relations between concentrated sets and sets possessing property C.Proc. Cambridge Philos. Soc., 38 (1942), 20–23.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2].
    Borel, E., Sur la classification des ensembles de mesure nulle,Bull. Soc. Math. France, 47 (1919), 97–125.zbMATHMathSciNetGoogle Scholar
  3. [3].
    Cohen, P. J.,Set Theory and the Continuum Hypothesis. Benjamin, 1966.Google Scholar
  4. [4].
    Darst, R. B., A universal null set which is not concentrated.Fund. Math., 62 (1968), 47–48.zbMATHMathSciNetGoogle Scholar
  5. [5].
    —, Some remarks on Hausdorff measure,Fund. Math., 64 (1969), 325–328.zbMATHMathSciNetGoogle Scholar
  6. [6].
    —, A CBV image of a universal null set need not be a universal null set,Fund. Math., 62 (1970), 219–220.MathSciNetGoogle Scholar
  7. [7].
    Devlin, K. J. & Johnsbraten, H.,The Souslin Problem. Lecture Notes in Mathematics 405, Springer-Verlag, 1974.Google Scholar
  8. [8].
    Hausdorff, F.,Summen von1 Mengen. Fund Math., 26 (1934), 241–255.Google Scholar
  9. [9].
    Kuratowski, C.,Topology volume I. Academic Press, 1966.Google Scholar
  10. [10].
    Lavrentieff, M. M., Contribution a la théorie des ensembles homeomorphes,Fund. Math., 6 (1924), 149–160.zbMATHGoogle Scholar
  11. [11].
    Lusin, N.,Théorie des fonctions, CRAS Paris (1958) 1914, 1258–1261.Google Scholar
  12. [12].
    Martin, D. A. &Solovay, R. M. Internal Cohen extensions.Ann. Math. Logic, 2 (1970), 143–178.CrossRefMathSciNetzbMATHGoogle Scholar
  13. [13].
    Mathias, A., On a generalization of Ramsey's theorem. Thesis, Cambridge, 1969.Google Scholar
  14. [14].
    Menas, T., On strong compactness and supercompactness. Thesis, Berkeley, 1973.Google Scholar
  15. [15].
    Rothberger, F., Eine verscharfung der eigenschaft C.Fund. Math., 30 (1938), 50–55.zbMATHGoogle Scholar
  16. [16].
    —, Sur les families indenombrables des suites de nombres naturels et les problèmes concernant la propriété C.Proc. Cambridge Philos. Soc., 37 (1941), 109–126.zbMATHMathSciNetCrossRefGoogle Scholar
  17. [17].
    Sacks, G. E., Forcing with perfect closed sets.Proceeding Symposium in Pure Mathematics 13, Amer. Math. Soc., Providence, Rhode Island, 1971, 331–355.Google Scholar
  18. [18].
    Sierpinski, W., Sur un ensemble non denombrable, donc toute image continue est de mesure nulle.Fund. Math., 11 (1928), 301–304.Google Scholar
  19. [19].
    — Les transformations continues et les transformations par fonctions continues.Towarzystwo naukowe warszawskie, Sprawozdańia z posiedzén, 30 (1937), 10–12.zbMATHGoogle Scholar
  20. [20].
    — Sur le rapport de la propriété (C) a la théorie générale des ensembles.Fund. Math 29 (1937), 91–96.zbMATHGoogle Scholar
  21. [21].
    — Remarque sur le probleme de l'invariance topologique de la propriété (C),Fund. Math. 30 (1938), 56–58.zbMATHMathSciNetGoogle Scholar
  22. [22].
    Sierpinski, W.,Hypothese du Continu, Chelsea 1956.Google Scholar
  23. [23].
    Sierpinski, W., &Szpilrajn, E., Remarque sur le problème de la mesure,Fund. Math., 26 (1934), 256–261.Google Scholar
  24. [24].
    Solovay, R. M., A model of set theory in which every set of reals is Lebesgue, measurable,Ann. of Math., 92 (1970), 1–56.CrossRefzbMATHMathSciNetGoogle Scholar
  25. [25].
    Solovay, R. M. &Tennenbaum, S., Iterated Cohen extensions and Souslin's problem.Ann. of Math., 94 (1971), 201–245.CrossRefMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksell 1976

Authors and Affiliations

  • Richard Laver
    • 1
  1. 1.University of ColoradoBoulderUSA

Personalised recommendations