Acta Mathematica

, Volume 153, Issue 1, pp 259–277 | Cite as

Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups

  • Dennis Sullivan


Entropy Kleinian Group Finite Kleinian Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B]
    Bowen, R., Hausdorff dimension of quasi-circles.Publ. Math. I.H.E.S., 50 (1979), 11–26.zbMATHMathSciNetGoogle Scholar
  2. [B2]
    Beardon, A. F., The Hausdorff dimension of singular sets of properly discontinuous groups.Amer. J. Math., 88 (1966), 722–736.zbMATHMathSciNetGoogle Scholar
  3. [BK]
    Brin, M. & Katok, A., On local entropy.Geometric Dynamics, Proceedings in Rio de Janeiro 1981. Lecture Notes in Mathematics, 1007, pp. 30–38.Google Scholar
  4. [F]
    Federer, H.,Geometric measure theory. Springer Grundlehren, Series Band 153.Google Scholar
  5. [P]
    Patterson, S. J., The limit set of a Fuchsian group.Acta Math., 136 (1976), 241–273.zbMATHMathSciNetGoogle Scholar
  6. [R]
    Rogers, C. A.,Hausdorff measures. Cambridge University Press 1970, chapter 1.Google Scholar
  7. [S1]
    Sullivan, D., Disjoint spheres, diophantine approximation, and the logarithm law for geodesics.Acta Math., 149 (1983), 215–237.MathSciNetGoogle Scholar
  8. [S2]
    —, The density at infinity of a discrete group of hyperbolic isometries.Publ. Math. I.H.E.S., 50 (1979), 171–209.zbMATHMathSciNetGoogle Scholar
  9. [T]
    Thurston, B.,Geometry and topology of 3-manifolds. Notes from Princeton University, 1978.Google Scholar

Copyright information

© Almqvist & Wiksell 1984

Authors and Affiliations

  • Dennis Sullivan
    • 1
    • 2
  1. 1.I.H.E.S.Bures-sur-YvetteFrance
  2. 2.C.U.N.Y.New YorkUSA

Personalised recommendations