Acta Mathematica

, Volume 153, Issue 1, pp 117–152 | Cite as

The index theorem for topological manifolds

  • Nicolae Teleman


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A1]Atiyah, M. F., Global theory of elliptic operators.Proc. Int. Conf. Functional Analysis and Related Topics, Tokyo (1969), 21–30.Google Scholar
  2. [A2]Atiyah, M. F. A survey ofK-theory, inK-theory and operator algebras, Athens, Georgia 1975. Springer Lecture Notes no. 575, 1–9.Google Scholar
  3. [A.S.]Atiyah, M. F. &Singer, I. M., The index of elliptic operators, Part III.Ann. of Math., 87 (1968), 546–604.CrossRefMathSciNetGoogle Scholar
  4. [B.D.F.]Brown, L. G., Douglas, R. G. &Fillmore, P. A., Extensions ofC *-algebras andK-homology.Ann. of Math., 105 (1977), 265–324.CrossRefMathSciNetGoogle Scholar
  5. [B.F.M.]Baum, P., Fulton, W. &MacPherson, R., Riemann-Roch for singular varieties.Publ. Math. I.H.E.S., 45 (1975), 101–167.MathSciNetGoogle Scholar
  6. [B.J.]Baaj, S. &Julg, P., Théorie bivariante de Kasparov et opérateurs non bornés dans lesC *-modules hilbertiens.C. R. Acad. Sci. Paris, 296 (1983), 875–878.MathSciNetGoogle Scholar
  7. [C]Cheeger, J., On the Hodge theory on Riemannian pseudomanifolds.Proc. Symp. Pure Math., A.M.S., 36 (1980), 91–146.MATHMathSciNetGoogle Scholar
  8. [H1]Hilsum, M., Opérateurs de signature sur une varieté Lipschitzienne et modules de Kasparov non bornés.C. R. Acad. Sci. Paris, 297 (1983), 49–52.MATHMathSciNetGoogle Scholar
  9. [H2]Hilton, P.,General cohomology theory and K-theory. London Math. Soc. Lecture Note Series, 1 (1971).Google Scholar
  10. [H3]Hirzebruch, F.,Topological methods in algebraic geometry. 3rd Edition, Springer-Verlag, 1966.Google Scholar
  11. [K]Kasparov, G. G., Topological invariants of elliptic operators, I:K-homology.Math. USSR-Izv., 9 (1975), 751–792 (english translation).CrossRefMathSciNetGoogle Scholar
  12. [K.S.]Kirby, R. & Siebenmann, L.,Foundational essays on topological manifolds, smoothings and triangulations. Annals of Math. Studies, Vol. 88 (1977), Princeton.Google Scholar
  13. [L.T.]Luukkainen, J. &Tukia, P., Quasisymmetric and Lipschitz approximation of embeddings.Ann. Acad. Sci. Fenn. Ser. A Math., 6 (1981), 343–368.MathSciNetGoogle Scholar
  14. [N]Novikov, S. P., Topological invariance of rational Pontrjagin classes.Dokl. Akad. Nauk SSSR, 163 (1965), 921–923.MATHGoogle Scholar
  15. [P]Palais, R. S.,Seminar on the Atiyah-Singer index theorem. Annals of Math. Studies, Vol. 57 (1965), Princeton.Google Scholar
  16. [R.S.]Rourke, C. P. &Sanderson, B. J., On topological neighborhoods.Compositio Math., 22 (1970), 387–424.MathSciNetGoogle Scholar
  17. [Si]Singer, I. M.,Future extensions of index theory and elliptic operators. Annals of Math. Studies, Vol. 70 (1971), Princeton, 171–185.MATHGoogle Scholar
  18. [Su1]Sullivan, D.,Geometric topology, Part 1. M.I.T. Notes (1969).Google Scholar
  19. [Su2]Sullivan, D., Hyperbolic geometry and homeomorphisms, inGeometric topology, Proc. Georgia Topology Conf., Athens, Georgia 1977, 543–555. Ed. J. C. Cantrell, Academic Press, 1979.Google Scholar
  20. [S.T.]Sullivan, D. &Teleman, N., An analytical proof of Novikov’s theorem on rational Pontriagin classes.Publ. Math. I.H.E.S., 58 (1983), 79–82.MathSciNetGoogle Scholar
  21. [T1]Teleman, N., Global analysis onPL-manifolds.Trans. Amer. Math. Soc., 256 (1979), 49–88.CrossRefMATHMathSciNetGoogle Scholar
  22. [T2] —, Combinatorial Hodge theory and signature operator.Invent. Math., 61 (1980), 227–249.CrossRefMATHMathSciNetGoogle Scholar
  23. [T3] —, The index of signature operators on Lipschitz manifolds.Publ. Math. I.H.E.S., 58 (1983), 39–78.MathSciNetGoogle Scholar
  24. [T.V.]Tukia, P. &Väisälä, J., Lipschitz and quasiconformal approximation and extension.Ann. Acad. Sci. Fenn. Ser. A. Math., 6 (1981), 303–342.Google Scholar

Copyright information

© Almqvist & Wiksell 1984

Authors and Affiliations

  • Nicolae Teleman
    • 1
  1. 1.State University of New YorkStony BrookUSA

Personalised recommendations