Acta Mathematica

, Volume 149, Issue 1, pp 127–152

Analytic capacity and differentiability properties of finely harmonic functions

  • Alexander M. Davie
  • Bernt Øksendal
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [14]
    — A theorem in fine potential theory and applications to finely holomorphic functions.J. Funct. Anal., 37 (1980), 19–26.CrossRefMathSciNetGoogle Scholar
  2. [15]
    Marshall, D., Removable sets for bounded analytic functions. InInvestigations in Linear Operators and the Theory of Functions (99 unsolved problems in linear and complex analysis). Zapiski Nauk, seminar LOMI Vol. 81 (1978), 202–205. Ed.: N. K. Nikolski, V. P. Havin and S. V. Hruscev.Google Scholar
  3. [16]
    Mizuta, T., Fine differentiability of Riesz potentials.Hiroshima Math. J., 8 (1978), 505–514.MATHMathSciNetGoogle Scholar
  4. [17]
    Vitushkin, A. G., The analytic capacity of sets in problems of approximation theory.Uspehi Mat. Nauk, 22 (1967), 141–199 (=Russian Math. Surveys, 22 (1967), 139–200).MATHMathSciNetGoogle Scholar
  5. [18]
    Zalcman, L.,Analytic capacity and rational approximation. Springer Lecture Notes in Mathematics, 50. Springer-Verlag, 1968.Google Scholar

Copyright information

© Almqvist & Wiksell 1982

Authors and Affiliations

  • Alexander M. Davie
    • 1
  • Bernt Øksendal
    • 2
  1. 1.University of EdinburghScotland
  2. 2.Agder DistriktshøgskoleKristiansandNorway

Personalised recommendations