Advertisement

Acta Mathematica

, Volume 125, Issue 1, pp 109–154 | Cite as

Groups of continuous functions in harmonic analysis

  • N. Th. Varopoulos
Article

Keywords

Continuous Function Harmonic Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Rudin, W.,Fourier analysis on groups (ch. 5). Interscience No 12, (1962).Google Scholar
  2. [2].
    Kahane, J. P. & Salem, R.,Ensembles parfaits et séries trigonométriques (ch. XI). Act. Sci. Ind. 1301, Hermann, 1963.Google Scholar
  3. [3].
    Naimark, M. A.,Normed rings. (Translated from Russian.) § 31 No 3. Noordhoff, 1964.Google Scholar
  4. [4].
    Drury, S.,Comptes Rendus Acad. Sci. Paris, 268 (1969), 775–777.zbMATHMathSciNetGoogle Scholar
  5. [5].
    Bernard, A. & Varopoulos, N. Th., Groupes des fonctions continues sur un compact — applications à l'étude des ensembles de Kronecker. To appear inStudia Math. Google Scholar
  6. [6].
    Körner, T. W., Some results on Kronecker, Dirichlet and Helson sets. (To appear.)Google Scholar
  7. [7].
    Varopoulos, N. Th.,Comptes Rendus Acad. Sci. Paris, 268 (1969), 954–957.zbMATHMathSciNetGoogle Scholar
  8. [8].
    Bourbaki, N.,Topologie génerale. 3me edition, Ch. I, § 8, No 5, Th. 1.Google Scholar
  9. [9].
    Varopoulos, N. Th.,Comptes Rendus Acad. Sci. Paris, 260 (1965), 3831–3834.zbMATHMathSciNetGoogle Scholar
  10. [10].
    Kaufman, R., A functional method for linear sets.Israel J. Math., 5 (1967), 185–187.zbMATHMathSciNetGoogle Scholar
  11. [11].
    Salem, R., On sets of multiplicity for trigonometric series,Amer. J. Math., 64 (1942), 531–538.zbMATHMathSciNetGoogle Scholar
  12. [12].
    Varopoulos, N. Th., Sets of multiplicity in locally compact abelian groups.Ann. Inst. Fourier, Grenoble, 16 (1966), 123–158.zbMATHMathSciNetGoogle Scholar
  13. [13].
    Kaufman, R., Small subsets of finite abelian groups.Ann. Inst. Fourier, Grenoble 18 (1968) 99–102.zbMATHMathSciNetGoogle Scholar
  14. [14].
    Varopoulos, N. Th., On a problem of A. Beurling.J. Funct. Anal., 2 (1968), 24–30.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15].
    Varopoulos, N. Th., Tensor algebras and harmonic analysis.Acta Math., 119 (1967), 51–111.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1970

Authors and Affiliations

  • N. Th. Varopoulos
    • 1
    • 2
    • 3
  1. 1.Institut Mittag-LefflerDjursholmSweden
  2. 2.Faculté des Sciences91-OrsayFrance
  3. 3.King's CollegeCambridgeEngland

Personalised recommendations