Advertisement

Acta Mathematica

, Volume 139, Issue 1, pp 155–184 | Cite as

The regularity of free boundaries in higher dimensions

  • Luis A. Caffarelli
Article

Keywords

High Dimension Free Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Agmon, S., Douglis, A. &Nirenberg, L., Estimates near the boundary of solutions of elliptic partial differential equations satisfying general boundary conditions.Comm. Pure Appl. Math., 12 (1959), 623–727.MathSciNetzbMATHGoogle Scholar
  2. [2].
    Brezis, H. &Kinderlehrer, D., The Smoothness of Solutions to Nonlinear Variational Inequalities.Indiana Univ. Math. J., 23, 9 (March 1974), 831–844.CrossRefMathSciNetzbMATHGoogle Scholar
  3. [3].
    Brezis, H. &Stampacchia, C., Sur la regularite de la solution d'inequations elliptiques.Gull. Soc. Math. France, 96 (1968), 153–180.MathSciNetzbMATHGoogle Scholar
  4. [4].
    Caffarelli, L., The smoothness of the free surface in a filtration problem.Arch. Rational Mech. Anal. (1977).Google Scholar
  5. [5].
    Caffarelli, L. &Riviere, N. M., On the smoothness and analyticity of free boundaries in variational inequalities.Ann. Scuola Norm. sup. Pisa, Sci. Fis. Mat., (Ser. IV), 3 (1976), 289–310.MathSciNetzbMATHGoogle Scholar
  6. [6].
    — The smoothness of the elastic-plastic free boundary of a twisted bar.Proc. Amer. Math. Soc., 63, (1977), 56–58.CrossRefMathSciNetzbMATHGoogle Scholar
  7. [7].
    Duvaut, G., Resolution d'un probleme de Stefan (Fusion d'un bloe de glace a zero degreé).C.R. Acad. Sci., Paris, sèr A.-B., 276 (1973), 1461–1463.zbMATHMathSciNetGoogle Scholar
  8. [8].
    Friedman, A., The shape and smoothness of the free boundary for some elliptic variational inequalities. To appear.Google Scholar
  9. [9].
    Friedman, A. &Kinderlehrer, D., A one phase Stefan problem.Indiana Univ. Math. J., 24 (1975), 1005–1035.CrossRefMathSciNetzbMATHGoogle Scholar
  10. [10].
    Kemper, J., Temperatures in several variables: Kernel functions, representations and parabolic boundary values.Trans. Amer. Math. Soc., 167 (1972), 243–261.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11].
    Kinderlehrer D., How a minimal surface leaves an obstacle.Acta Math., 130, (1973), 221–242.zbMATHMathSciNetGoogle Scholar
  12. [12].
    Kinderlehrer, D. & Nirenberg, L., Regularity in Free Boundary Problems.Ann. Scuola Norm. sup. Pisa Sci. Fis. Mat. To appear.Google Scholar
  13. [13].
    Lewy, H., On the reflection laws of second order differential equations in two independent variables.Bull. Amer. Math. Soc., 65 (1959), 37–58.zbMATHMathSciNetCrossRefGoogle Scholar
  14. [14].
    Lewy, H. &Stampacchia, G., On the regularity of the solution of a variational inequality.Comm. Pure Appl. Math., 22 (1969), 153–188.MathSciNetzbMATHGoogle Scholar
  15. [15].
    Nitsche, J. C. C., Variational problems with inequalities as boundary conditions or How to fashion a cheap hat for Giacometti's brother.Arch Rational Mech. Anal., 35 (1969), 83–113.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16].
    Serrin, J., On the Harnack inequality for linear elliptic equations.J. Analyse, 4 (1954–56), 292–308.MathSciNetCrossRefGoogle Scholar

Copyright information

© Almqvist & Wiksell 1977

Authors and Affiliations

  • Luis A. Caffarelli
    • 1
  1. 1.University of MinnesotaMinneapolisUSA

Personalised recommendations