Acta Mathematica

, 133:219 | Cite as

Real hypersurfaces in complex manifolds

  • S. S. Chern
  • J. K. Moser
Article

References

  1. [1].
    Cartan, E., Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I.Ann. Math. Pura Appl., (4) 11 (1932), 17–90 (orOeuvres II, 2, 1931–1304); II,Ann. Scuola Norm. Sup. Pisa, (2) 1 (1932) 333–354 (orOeuvres III, 2, 1217–1238).MATHMathSciNetGoogle Scholar
  2. [2].
    Fefferman, C., The Bergman Kernel and Biholomorphic Mappings of Pseudoconvex DomainsInvent. Math., 26 (1974), 1–65.CrossRefMATHMathSciNetGoogle Scholar
  3. [3].
    Hopf, H., Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche.Math. Ann., 104, 1931, 637–665, § 5.CrossRefMATHMathSciNetGoogle Scholar
  4. [4].
    Moser, J., Holomorphic equivalence and normal forms of hypersurfaces. To appear inProc. Symp. in Pure Math., Amer. Math. Soc.Google Scholar
  5. [5].
    Nirenberg, L.,Lectures on linear partial differential equations. Regional Conf. Series in Math., No. 17 Amer. Math. Soc. 1973.Google Scholar
  6. [6].
    Poincaré, H., Les fonctions analytiques de deux variables et la représentation conforme.Rend. Circ. Mat. Palermo (1907), 185–220.Google Scholar
  7. [7].
    Tanaka, N., I. On the pseudo-conformal geometry of hypersurfaces of the space ofn complex variables.J. Math. Soc. Japan, 14 (1962), 397–429; II. Graded Lie algebras and geometric structures,Proc. US-Japan Seminar in Differential Geometry, 1965, 147–150.MATHMathSciNetCrossRefGoogle Scholar
  8. [8].
    Wells, R. O., Function theory on differentiable submanifolds.Contributions to Analysis, Academic Press, 1974, 407–441.Google Scholar

Copyright information

© Almqvist & Wiksell 1974

Authors and Affiliations

  • S. S. Chern
    • 1
    • 2
  • J. K. Moser
    • 1
    • 2
  1. 1.University of CaliforniaBerkeleyUSA
  2. 2.New York UniversityNew YorkUSA

Personalised recommendations