Acta Mathematica

, Volume 143, Issue 1, pp 273–305 | Cite as

Averages of the counting function of a quasiregular mapping

  • P. Mattila
  • S. Rickman
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Ahlfors, L., Zur Theorie der Überlagerungesflächen.Acta Math., 65 (1935), 157–194.MATHGoogle Scholar
  2. [2].
    Federer, H.,Geometric Measure Theory. Springer-Verlag, 1969.Google Scholar
  3. [3].
    Gehring, F. W., Symmetrization of rings in space.Trans. Amer. Math. Soc., 101 (1961), 499–519.CrossRefMATHMathSciNetGoogle Scholar
  4. [4].
    —, A remark on domains quasiconformally equivalent to a ball.Ann. Acad. Sci. Fenn AI 2 (1976), 147–155.MATHMathSciNetGoogle Scholar
  5. [5].
    Lelong-Ferrand, J., Etude d'une classe d'applications liées à des homomorphismes d'algebres de fonctions, et generalisant les quasi conformes.Duke Math. J., 40 (1973), 163–186.CrossRefMATHMathSciNetGoogle Scholar
  6. [6].
    —, Invariants conformes globaux sur les variétés Riemanniennes.J. Differential Geometry, 8 (1973), 487–510.MATHMathSciNetGoogle Scholar
  7. [7].
    Martio, O., Equicontinuity theorem with an application to variational integrals.Duke Math. J., 42 (1975), 569–581.CrossRefMATHMathSciNetGoogle Scholar
  8. [8].
    Martio, O., Capacity and measure densities, to appear.Google Scholar
  9. [9].
    Martio, O., Rickman, S. &Väisälä, J., Definitions for quasiregular mappings.Ann. Acad. Sci. Fenn. AI, 448 (1969), 1–40.Google Scholar
  10. [10].
    —, Distortion and singularities of quasiregular mappings.Ann. Acad. Sci. Fenn. AI, 488 (1971), 1–31.Google Scholar
  11. [11].
    —, Topological and metric properties of quasiregular mappings.Ann. Acad. Sci. Fenn. AI, 488 (1971), 1–31.Google Scholar
  12. [12].
    Miles, J., On the counting function for thea-values of a meromorphic function.Trans. Amer. Math. Soc., 147 (1970), 203–222.CrossRefMATHMathSciNetGoogle Scholar
  13. [13].
    Nevanlinna, R.,Analytic Functions. Springer-Verlag, 1970.Google Scholar
  14. [14].
    Näkki, R., Extension of Loewner's capacity theorem.Trans. Amer. Math. Soc., 180 (1973), 229–236.CrossRefMATHMathSciNetGoogle Scholar
  15. [15].
    Poleckii, E. A., The modulus method for non-homeomorphic quasiconformal mappings (Russian).Mat. Sb., 83 (1970), 261–272.MathSciNetGoogle Scholar
  16. [16].
    Rado, T. & Reichelderfer, P. V.,Continuous Transformations in Analysis. Springer-Verlag, 1955.Google Scholar
  17. [17].
    Rešetnjak, J. G., Space mappings with bounded distortion (Russian).Sibirsk. Mat. Ž. 8 (1967), 629–658.MathSciNetGoogle Scholar
  18. [18].
    —, On the condition of boundedness of index for mappings with bounded distortion (Russian).Sibirsk. Mat. Ž., 9 (1968), 368–374.MathSciNetGoogle Scholar
  19. [19].
    Rickman, S., Path lifting for discrete open mappings.Duke Math. J., 40 (1973), 187–191.CrossRefMATHMathSciNetGoogle Scholar
  20. [20].
    —, On the value distribution of quasimeromorphic maps.Ann. Acad. Sci. Fenn AI 2, (1976), 447–466.MATHMathSciNetGoogle Scholar
  21. [21].
    Sarvas, J., Symmetrization of condensers inn-space.Ann. Acad. Sci. Fenn. AI, 522 (1973), 1–44.Google Scholar
  22. [22].
    Suominen, K., Quasiconformal maps in manifolds.Ann. Acad. Sci. Fenn. AI, 393 (1966), 1–39.MathSciNetGoogle Scholar
  23. [23].
    Toppila, S., On the counting function for thea-values of a meromorphic function.Ann. Acad. Sci. Fenn. AI 2, (1976), 565–572.MATHMathSciNetGoogle Scholar
  24. [24].
    Väisälä, J., Discrete open mappings on manifolds.Ann. Acad. Sci. Fenn. AI, 392 (1966), 1–10.Google Scholar
  25. [25].
    Väisälä, J., Lectures onn-Dimensional Quasiconformal Mappings.Lecture Notes in Mathematics 229, Springer-Verlag, 1971.Google Scholar
  26. [26].
    —, Modulus and capacity inequalities for quasiregular mappings.Ann. Acad. Sci. Fenn. AI, 509 (1972), 1–14.Google Scholar

Copyright information

© Almqvist & Wiksell 1979

Authors and Affiliations

  • P. Mattila
    • 1
  • S. Rickman
    • 1
  1. 1.University of HelsinkiHelsinkiFinland

Personalised recommendations