Advertisement

Acta Mathematica

, Volume 119, Issue 1, pp 51–112 | Cite as

Tensor algebras and harmonic analysis

  • N. Th. Varopoulos
Article

Keywords

Harmonic Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1].
    Schwartz, L. (Séminaire), Produits tensoriels topologiques d'espaces vectoriels topologiques. Espaces vectoriels topologiques nucléaires. Applications. (1953–1954), Faculté des Sciences de Paris. (Especially numbers 1 to 8.)Google Scholar
  2. [2].
    Naimark, M.,Normed rings. Groningen (1959). (Especially Chapter III and in particular § 15.)Google Scholar
  3. [3].
    Mallios, A., Tensor products and harmonic analysis.Math. Ann., 158 (1965), 46–54.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4].
    Bourbaki, N.,Topologie générale, Ch. 9; § 6; No. 6, 7. Hermann, Paris; A.S.I. 1045, Nouvelle édition.Google Scholar
  5. [5].
    Rudin, W.,Fourier analysis on groups. Interscience No. 12. (Especially Ch. 5, §§ 1, 2, 6, 7.)Google Scholar
  6. [6].
    Kurosh, A. G.,The theory of groups (translated in English). Chelsea, 1955. Vol. 1, § 24.Google Scholar
  7. [7].
    Zygmund, A.,Trigonometric series. Vol. 1. Cambridge U. P., 1959.Google Scholar
  8. [7].1)
    Zygmund, A.,Trigonometric series, p. 70; example 2.Google Scholar
  9. [7].2)
    Zygmund, A.,Trigonometris series, Ch. VI; Theorem 3.6.Google Scholar
  10. [7].3)
    Zygmund, A.,Trigonometric series, Ch. V; Theorem 4.2.Google Scholar
  11. [8].
    Morse, M., Bimeasures and their integral extensions.Ann. Mat. Pura Appl., (4) 39 (1955), 345–356.zbMATHMathSciNetGoogle Scholar
  12. [9].
    Kahane, J.-P. & Salem, R.,Ensembles parfaits et séries trigonométriques. Hermann, Paris; A.S.I. 1301. Especially:Google Scholar
  13. [9].1)
    Kahane, J.-P. & Salem, R.,Ensembles parfaits et s'eries trigonométriques. Hermann, Paris; A.S.I. 1301. Appendice II.Google Scholar
  14. [9].2)
    Kahane, J.-P. & Salem, R.,Ensembles parfaits et s'eries trigonométriques. Hermann, Paris; A.S.I. 1301. Ch. XI, No. 6.Google Scholar
  15. [9].3)
    Kahane, J.-P. & Salem, R.,Ensembles parfaits et séries trigonométriques. Hermann, Paris; A.S.I. 1301. Ch. IX, No. 6.Google Scholar
  16. [10].
    Loève, M.,Probability theory. Van Nostrand, 1955, Ch. VI.Google Scholar
  17. [11].
    Schwartz, L., Sur une propriété de synthèse spectrale dans les groupes non compactsC. R. Acad. Sci. Paris, 227 (1948), 424–426.zbMATHMathSciNetGoogle Scholar
  18. [12].1)
    Varopoulos, N. Th., Sur les ensembles parfaits et les séries trigonométriques etc.C. R. Acad. Sci. Paris, 260 (1965), 3831–3834. (We show there that every Kronecker set is a set of spectral synthesis.)zbMATHMathSciNetGoogle Scholar
  19. [12].2)
    .C. R. Acad. Sci. Paris, 260 (1965), 4668–4670; 5165–5168; 5997–6000. (The main ideas appear in these notes.)zbMATHGoogle Scholar
  20. [12].3)
    Varopoulos, N. Th., Sur les ensembles parfaits et les séries trigonométriques etc.C. R. Acad. Sci. Paris, 262 (A), 384–387; 447–449; 263(A), 785–787, 834–836. (More results are given in these notes.)Google Scholar
  21. [13].1)
    Herz, C. S., Sur la note précédente de M. Varopoulos.C. R. Acad. Sci. Paris, 260 (1965), 6001–6004.zbMATHMathSciNetGoogle Scholar
  22. [13].2)
    ,Math. Reviews, 31 (1966), 2567.Google Scholar
  23. [14].
    Reiter, H. J., Contributions to harmonic analysis IV.Math. Ann., 135 (1958), 467–476.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [15].
    Gatesoupe, M.,Sur les fonctions radiales. To appear.Google Scholar
  25. [16].
    Bochner, S. & Chandrasekharan, K.,Fourier transforms. Princeton U.P. (1949), Ch. II § 7.Google Scholar
  26. [17].
    Courant, R. & Hilbert, D.,Methods of mathematical physics. Interscience (1953), Vol. I, Ch. VII, No. 7.Google Scholar
  27. [18].
    Varopoulos, N. Th., Spectral synthesis on spheres.Proc. Cambridge Philos. Soc., 62 (1966), 379–387.MathSciNetCrossRefGoogle Scholar
  28. [19].1)
    Malliavin, P., Impossibilité de la synthèse spectrale sur les groupes abéliens non compacts.Inst. Hautes Études Sci. Publ. Math., 1959, 85–92.Google Scholar
  29. [19].2)
    Malliavin, P., Ensembles de résolution spectrale.Proc. I.C.M. Stockholm, 1963, 368–378.Google Scholar
  30. [20].
    —, Calcul symboluque et sous-algèbres deL 1(G).Bull. Soc. Math. France, 87 (1959), 181–190.zbMATHMathSciNetGoogle Scholar
  31. [21].
    Mandelbrojt, S.,Séries adhérentes, régularisation des suites, applications. Gauthier-Villars, Paris (1952) (Ch. IV).zbMATHGoogle Scholar
  32. [22].
    Rudin, W., Division in algebras of infinitely differentiable functions.J. Math. Mech., 11 (1962), 797–809.zbMATHMathSciNetGoogle Scholar
  33. [23].
    Katznelson, Y., Sur le calcul symbolique dans quelques algèbres de Banach.Ann. Sci. École Norm. Sup., 76 (1959), 83–124.zbMATHMathSciNetGoogle Scholar
  34. [24].
    Kahane, J.-P. &Katznelson, Y., Contribution à deux problèmes concernant les fonctions de la classe A.Israel J. Math., 1 (1963), 110–131.MathSciNetzbMATHGoogle Scholar
  35. [25].
    Kahane, J.-P., Sur le théorème de Beurling-Pollard.Math. Scand., 20 (1967).Google Scholar
  36. [26].
    Herz, C. S., The spectral theory of bounded functions.Trans. Amer. Math. Soc., 94 (1960), 181–232.CrossRefzbMATHMathSciNetGoogle Scholar
  37. [27].
    Helson, H., Kahane, J.-P., Katznelson, Y. &Rudin, W., The functions which operate on Fourier transforms.Acta Math., 102 (1959), 135–157.MathSciNetzbMATHGoogle Scholar
  38. [28].
    Kahane, J.-P., Algèbres tensorielles et analyse harmonique.Seminaire Bourbaki, May, 1965.Google Scholar
  39. [29].
    Varopoulos, N. Th.,Summer school on topological algebra theory; September 6–16, 1966, Bruges; Presses Universitaires de Bruxelles.Google Scholar
  40. [30].
    Kahane, J.-P., Sur la synthèse harmonique dansl An. Acad. Brasil Ci., 32 (1960), 179–189.zbMATHMathSciNetGoogle Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1967

Authors and Affiliations

  • N. Th. Varopoulos
    • 1
    • 2
    • 3
  1. 1.Trinity CollegeCambridgeEngland
  2. 2.Faculté des Sciences (Math.)OrsayFrance
  3. 3.The Institute for Advanced StudyPrincetonUSA

Personalised recommendations