Advertisement

Acta Mathematica

, 127:79 | Cite as

Fourier integral operators. I

  • Lars Hörmander
Article

Keywords

Fourier Integral Operator Fourier Integral Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1].
    Arnold, V. I., On a characteristic class which enters in quantization conditions.Funkt. anal. i ego pril., 1 (1967), 1–14 (Russian.). English translationFunct. anal. appl., 1 (1967), 1–13.CrossRefzbMATHGoogle Scholar
  2. [2].
    Atiyah, M. F.,K-theory. Benjamin 1968.Google Scholar
  3. [3].
    Atiyah, M. F. &Bott, R., A Lefschetz fixed point formula, for elliptic complexes I.Ann. of Math., 86 (1967), 374–407.CrossRefMathSciNetGoogle Scholar
  4. [4].
    Bokobza-Haggiag, J., Opérateurs pseudo-différentiels sur une variété différentiable.Ann. Inst. Fourier, Grenoble, 19 (1969), 125–177.zbMATHMathSciNetGoogle Scholar
  5. [5].
    Buslaev, V. S., The generating integral and the canonical Maslov operator in the WKB method,Funkt anal. i ego pril., 3:3 (1969), 17–31 (Russian). English translationFunct. anal. appl., 3 (1969), 181–193.zbMATHMathSciNetGoogle Scholar
  6. [6].
    Carathéodory, C.,Variationsrechnung und partielle Differentialgleichungen Erster Ordnung. Teubner, Berlin, 1935.Google Scholar
  7. [7].
    Egorov, Yu. V., On canonical transformations of pseudo-differential operators.Uspehi Mat. Nauk. 25 (1969), 235–236.Google Scholar
  8. [8].
    —, On non-degenerate hypoelliptic pseudo-differential operators.Doklady Akad. Nauk SSSR. 186 (1969), 1006–1007. (Russian.) English translationSoviet Math. Doklady, 10 (1969), 697–699.zbMATHGoogle Scholar
  9. [9].
    Eškin, G. I., The Cauchy problem for hyperbolic systems in convolutions.Mat. Sbornik, 74 (116) (1967), 262–297 (Russian). English translationMath. USSR — Sbornik, 3 (1967), 243–277.Google Scholar
  10. [10].
    Friedrichs, K.,Pseudo-differential operators. An introduction. Lecture notes, Courant Institute, New York University 1968.Google Scholar
  11. [11].
    Hirzebruch, P.,Topological methods in algebraic geometry. Grundlehren der Math. Wiss. 131, Springer-Verlag 1966.Google Scholar
  12. [12].
    Hörmander, L., Pseudo-differential operators,Comm. Pure Appl. Math., 18 (1965), 501–517.zbMATHMathSciNetGoogle Scholar
  13. [13].
    —, Pseudo-differential operators and hypoelliptic equations.Amer. Math. Soc. Symp. Pure Math., 10 (1966), Singular integral operators, 138–183.Google Scholar
  14. [14].
    —, The spectral function of an elliptic operator.Acta Math., 121 (1968) 193–218.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15].
    Hörmander, L., On the singularities of solutions of partial differential equations.Conf. on Funct. Anal. and Related Topics, Tokyo 1969, 31–40.Google Scholar
  16. [16].
    Hörmander, L., The calculus of Fourier integral operators.Conference on Prospects in Mathematics, Princeton University Press, 1971.Google Scholar
  17. [17].
    Hörmander, L.,Linear partial differential operators. Grundlehren d. Math. Wiss. 116. Springer-Verlag, 1963.Google Scholar
  18. [18].
    Keller, J. B., Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems.Ann. of Physics, 4 (1958), 180–188.CrossRefzbMATHGoogle Scholar
  19. [19].
    Kohn, J. J., &Nirenberg, L., On the algebra of pseudo-differential operators.Comm. Pure Appl. Math., 18 (1965), 269–305.MathSciNetzbMATHGoogle Scholar
  20. [20].
    Kumano-go, H., Remarks on pseudo-differential operatorsJ. Math. Soc. Japan, 21 (1969), 413–439.zbMATHCrossRefGoogle Scholar
  21. [21].
    Lax, P. D., Asymptotic solutions of oscillatory initial value problems.Duke Math. J., 24 (1957), 627–646.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [22].
    Ludwig, D., Exact and asymptotic solutions of the Cauchy problem.Comm. Pure Appl. Math., 13 (1960), 473–508.zbMATHMathSciNetGoogle Scholar
  23. [23].
    Maslov, V. P.,Theory of pertubations and asymptotic methods. Moskov. Gos. Univ., Moscow, 1965 (Russian).Google Scholar
  24. [24].
    Nirenberg, L., Pseudo-differential operators.Amer. Math. Soc. Symp. Pure Math., 16 (1970), 149–167.zbMATHMathSciNetGoogle Scholar
  25. [25].
    Nirenberg, L. &Trèves, F., On local solvability of linear partial differential equations. Part I: Necessary conditions. Part II: Sufficient conditions.Comm. Pure Appl. Math., 23 (1970), 1–38 and 459–510.MathSciNetzbMATHGoogle Scholar
  26. [26].
    Palais, R.,Seminar on the Atiyah-Singer index theorem. Annals of Mathematics Studies 57, 1965.Google Scholar
  27. [27].
    Sato, M., Hyperfunctions and partial differential equations.Conf. on Functional Analysis and Related Topics, Tokyo 1969 91–94.Google Scholar
  28. [28].
    Sternberg, S.,Lectures on differential geometry. Prentice Hall, 1965.Google Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1971

Authors and Affiliations

  • Lars Hörmander
    • 1
  1. 1.University of LundSweden

Personalised recommendations