Acta Mathematica

, 127:79

Fourier integral operators. I

  • Lars Hörmander
Article

References

  1. [1].
    Arnold, V. I., On a characteristic class which enters in quantization conditions.Funkt. anal. i ego pril., 1 (1967), 1–14 (Russian.). English translationFunct. anal. appl., 1 (1967), 1–13.CrossRefMATHGoogle Scholar
  2. [2].
    Atiyah, M. F.,K-theory. Benjamin 1968.Google Scholar
  3. [3].
    Atiyah, M. F. &Bott, R., A Lefschetz fixed point formula, for elliptic complexes I.Ann. of Math., 86 (1967), 374–407.CrossRefMathSciNetGoogle Scholar
  4. [4].
    Bokobza-Haggiag, J., Opérateurs pseudo-différentiels sur une variété différentiable.Ann. Inst. Fourier, Grenoble, 19 (1969), 125–177.MATHMathSciNetGoogle Scholar
  5. [5].
    Buslaev, V. S., The generating integral and the canonical Maslov operator in the WKB method,Funkt anal. i ego pril., 3:3 (1969), 17–31 (Russian). English translationFunct. anal. appl., 3 (1969), 181–193.MATHMathSciNetGoogle Scholar
  6. [6].
    Carathéodory, C.,Variationsrechnung und partielle Differentialgleichungen Erster Ordnung. Teubner, Berlin, 1935.Google Scholar
  7. [7].
    Egorov, Yu. V., On canonical transformations of pseudo-differential operators.Uspehi Mat. Nauk. 25 (1969), 235–236.Google Scholar
  8. [8].
    —, On non-degenerate hypoelliptic pseudo-differential operators.Doklady Akad. Nauk SSSR. 186 (1969), 1006–1007. (Russian.) English translationSoviet Math. Doklady, 10 (1969), 697–699.MATHGoogle Scholar
  9. [9].
    Eškin, G. I., The Cauchy problem for hyperbolic systems in convolutions.Mat. Sbornik, 74 (116) (1967), 262–297 (Russian). English translationMath. USSR — Sbornik, 3 (1967), 243–277.Google Scholar
  10. [10].
    Friedrichs, K.,Pseudo-differential operators. An introduction. Lecture notes, Courant Institute, New York University 1968.Google Scholar
  11. [11].
    Hirzebruch, P.,Topological methods in algebraic geometry. Grundlehren der Math. Wiss. 131, Springer-Verlag 1966.Google Scholar
  12. [12].
    Hörmander, L., Pseudo-differential operators,Comm. Pure Appl. Math., 18 (1965), 501–517.MATHMathSciNetGoogle Scholar
  13. [13].
    —, Pseudo-differential operators and hypoelliptic equations.Amer. Math. Soc. Symp. Pure Math., 10 (1966), Singular integral operators, 138–183.Google Scholar
  14. [14].
    —, The spectral function of an elliptic operator.Acta Math., 121 (1968) 193–218.CrossRefMATHMathSciNetGoogle Scholar
  15. [15].
    Hörmander, L., On the singularities of solutions of partial differential equations.Conf. on Funct. Anal. and Related Topics, Tokyo 1969, 31–40.Google Scholar
  16. [16].
    Hörmander, L., The calculus of Fourier integral operators.Conference on Prospects in Mathematics, Princeton University Press, 1971.Google Scholar
  17. [17].
    Hörmander, L.,Linear partial differential operators. Grundlehren d. Math. Wiss. 116. Springer-Verlag, 1963.Google Scholar
  18. [18].
    Keller, J. B., Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems.Ann. of Physics, 4 (1958), 180–188.CrossRefMATHGoogle Scholar
  19. [19].
    Kohn, J. J., &Nirenberg, L., On the algebra of pseudo-differential operators.Comm. Pure Appl. Math., 18 (1965), 269–305.MathSciNetMATHGoogle Scholar
  20. [20].
    Kumano-go, H., Remarks on pseudo-differential operatorsJ. Math. Soc. Japan, 21 (1969), 413–439.MATHCrossRefGoogle Scholar
  21. [21].
    Lax, P. D., Asymptotic solutions of oscillatory initial value problems.Duke Math. J., 24 (1957), 627–646.CrossRefMATHMathSciNetGoogle Scholar
  22. [22].
    Ludwig, D., Exact and asymptotic solutions of the Cauchy problem.Comm. Pure Appl. Math., 13 (1960), 473–508.MATHMathSciNetGoogle Scholar
  23. [23].
    Maslov, V. P.,Theory of pertubations and asymptotic methods. Moskov. Gos. Univ., Moscow, 1965 (Russian).Google Scholar
  24. [24].
    Nirenberg, L., Pseudo-differential operators.Amer. Math. Soc. Symp. Pure Math., 16 (1970), 149–167.MATHMathSciNetGoogle Scholar
  25. [25].
    Nirenberg, L. &Trèves, F., On local solvability of linear partial differential equations. Part I: Necessary conditions. Part II: Sufficient conditions.Comm. Pure Appl. Math., 23 (1970), 1–38 and 459–510.MathSciNetMATHGoogle Scholar
  26. [26].
    Palais, R.,Seminar on the Atiyah-Singer index theorem. Annals of Mathematics Studies 57, 1965.Google Scholar
  27. [27].
    Sato, M., Hyperfunctions and partial differential equations.Conf. on Functional Analysis and Related Topics, Tokyo 1969 91–94.Google Scholar
  28. [28].
    Sternberg, S.,Lectures on differential geometry. Prentice Hall, 1965.Google Scholar

Copyright information

© Almqvist & Wiksells Boktryckeri AB 1971

Authors and Affiliations

  • Lars Hörmander
    • 1
  1. 1.University of LundSweden

Personalised recommendations